TQMa8MPxL User's Manual TQMa8MPxL UM 0106 11.07.2024 # TABLE OF CONTENTS | 1. | ABOUT THIS MANUAL | | |--------------------|---|----| | 1.1 | Copyright and license expenses | | | 1.2 | Registered trademarks | 1 | | 1.3 | Disclaimer | 1 | | 1.4 | Imprint | 1 | | 1.5 | Tips on safety | 2 | | 1.6 | Symbols and typographic conventions | 2 | | 1.7 | Handling and ESD tips | 2 | | 1.8 | Naming of signals | | | 1.9 | Further applicable documents / presumed knowledge | | | 2. | BRIEF DESCRIPTION | | | 2.1 | Key functions and characteristics | | | 2.2 | CPU block diagram | | | 3. | ELECTRONICS | | | 3.1 | Interfaces to other systems and devices | | | 3.1.1 | Pin multiplexing | | | 3.1.1.1 | Pinout TQMa8MPxL | | | 3.1.1.2 | TQMa8MPxL signals | | | 3.2 | System components | | | 3.2.1 | i.MX 8M Plus | | | 3.2.1
3.2.1.1 | i.MX 8M Plus derivatives | | | 3.2.1.1
3.2.1.2 | | | | | i.MX 8M Plus errata | | | 3.2.1.3 | Boot modes | | | 3.2.1.4 | Boot configuration | | | 3.2.2 | Memory | | | 3.2.2.1 | LPDDR4 SDRAM | | | 3.2.2.2 | eMMC | | | 3.2.2.3 | QSPI NOR Flash | | | 3.2.2.4 | EEPROM 24LC64T | | | 3.2.2.5 | EEPROM with temperature sensor SE97BTP | | | 3.2.3 | Trust Secure Element SE050 | | | 3.2.4 | RTC | 15 | | 3.2.4.1 | i.MX 8M Plus internal RTC | | | 3.2.4.2 | Discrete RTC PCF85063A | | | 3.2.5 | Interfaces | 16 | | 3.2.5.1 | Overview | 16 | | 3.2.5.2 | CAN FD | 17 | | 3.2.5.3 | PWM | 17 | | 3.2.5.4 | GPT | 17 | | 3.2.5.5 | Ethernet | 18 | | 3.2.5.6 | I ² C | 19 | | 3.2.5.7 | JTAG | 20 | | 3.2.5.8 | GPIO | 21 | | 3.2.5.9 | MIPI CSI | | | 3.2.5.10 | MIPI DSI | | | 3.2.5.11 | HDMI | | | 3.2.5.12 | LVDS | | | 3.2.5.13 | PCIe | | | 3.2.5.14 | SAI | | | 3.2.5.15 | SPDIF | | | 3.2.5.16 | OSPI / NAND. | | | 3.2.5.10 | | | | | ECSPI | | | 3.2.5.18 | UART | | | 3.2.5.19 | USB | | | 3.2.5.20 | uSDHC | | | 3.2.5.21 | External clock sources | | | 3.2.6 | Unspecific signals | | | 3.2.7 | Reset | | | 3.2.8 | Power | | | 3.2.8.1 | Power supply | | | 3.2.8.2 | Power consumption | 33 | | 3.2.8.3 | Voltage monitoring | 33 | |---------|--|----| | 3.2.8.4 | Other supply voltages | 33 | | 3.2.8.5 | Supply outputs | 34 | | 3.2.8.6 | Configurable voltages | 34 | | 3.2.8.7 | Power-Up sequence TQMa8MPxL / carrier board | 35 | | 3.2.8.8 | Standby and SNVS | 35 | | 3.2.8.9 | PMIC | 36 | | 3.2.9 | Impedances | 36 | | 4. | SOFTWARE | 37 | | 5. | MECHANICS | 38 | | 5.1 | Dimensions | 38 | | 5.2 | Component placement | 39 | | 5.3 | Adaptation to the environment | 40 | | 5.4 | Protection against external effects | 40 | | 5.5 | Thermal management | 40 | | 5.6 | Structural requirements | 40 | | 6. | SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS | 41 | | 6.1 | EMC | 41 | | 6.2 | ESD | 41 | | 6.3 | Shock and Vibration | 41 | | 6.4 | Climate and operational conditions | 42 | | 6.5 | Cyber Security | 42 | | 6.6 | Intended Use | | | 6.7 | Export Control and Sanctions Compliance | 43 | | 6.8 | Warranty | | | 6.9 | Operational safety and personal security | 43 | | 6.10 | Reliability and service life | 43 | | 7. | ENVIRONMENT PROTECTION | 44 | | 7.1 | RoHS | 44 | | 7.2 | WEEE [®] | | | 7.3 | REACH® | 44 | | 7.4 | Statement on California Proposition 65 | 44 | | 7.5 | EuP | 44 | | 7.6 | Battery | 44 | | 7.7 | Packaging | 44 | | 7.8 | Other entries | 44 | | 8. | APPENDIX | | | 8.1 | Acronyms and definitions | 46 | | 8.2 | References | 48 | # TABLE DIRECTORY | Table 1: | Terms and conventions | 2 | |-----------|--|----| | Table 2: | Pinout TQMa8MPxL, top view through TQMa8MPxL | 6 | | Table 3: | TQMa8MPxL, signals | 7 | | Table 4: | i.MX 8M Plus derivatives | 13 | | Table 5: | Boot configuration i.MX 8M Plus | | | Table 6: | TQMa8MPxL-internal interfaces | 16 | | Table 7: | CAN FD signals | 17 | | Table 8: | ENET signals in RGMII mode | | | Table 9: | I ² C signals | 19 | | Table 10: | Address assignment I2C1 bus | 19 | | Table 11: | JTAG signals | 20 | | Table 12: | GPIO signals | 21 | | Table 13: | MIPI CSI signals | 22 | | Table 14: | MIPI DSI signals | 23 | | Table 15: | HDMI signals | 23 | | Table 16: | LVDS signals | 24 | | Table 17: | PCIe signals | 25 | | Table 18: | SAI signals | 26 | | Table 19: | QSPI signals | 27 | | Table 20: | ECSPI signals | 27 | | Table 21: | UART signals | 28 | | Table 22: | USB signals | 29 | | Table 23: | USDHC2 signals | 30 | | Table 24: | CLK signals | 31 | | Table 25: | Unspecific signals | 31 | | Table 26: | Reset signals | 32 | | Table 27: | Power consumption | 33 | | Table 28: | Voltages provided by TQMa8MPxL | 34 | | Table 29: | Configurable voltages | 34 | | Table 30: | PMIC signals | | | Table 31: | Impedances | 36 | | Table 32: | TQMa8MPxL heights | 38 | | Table 33: | Labels on TQMa8MPxL | 39 | | Table 34: | Shock resistance | 41 | | Table 35: | Vibration resistance | 41 | | Table 36: | Climate and operational conditions | 42 | | Table 37: | Acronyms | 46 | | Table 38: | Further applicable documents | 48 | # FIGURE DIRECTORY | Figure 1: | Block diagram i.MX 8M Plus | 4 | |------------|---|----| | Figure 2: | Block diagram TQMa8MPxL (simplified) | 5 | | Figure 3: | Block diagram eMMC | 14 | | Figure 4: | Block diagram EEPROM | 14 | | Figure 5: | Block diagram RTC supply (TQMa8MPxL without discrete RTC) | 15 | | Figure 6: | Block diagram RTC supply (TQMa8MPxL with discrete RTC) | 16 | | Figure 7: | Block diagram I ² C | 19 | | Figure 8: | Block diagram JTAG interface | 20 | | Figure 9: | Block diagram MIPI CSI | 22 | | Figure 10: | Block diagram MIPI DSI | 22 | | Figure 11: | Block diagram LVDS | 24 | | Figure 12: | Block diagram PCIe | 25 | | Figure 13: | Block diagram SAI1 | 26 | | Figure 14: | Block diagram SPDIF | 26 | | Figure 15: | Block diagram ECSPI | 27 | | Figure 16: | Block diagram UART interfaces | 28 | | Figure 17: | Block diagram USB interfaces | 29 | | Figure 18: | Block diagram SD card interface | 30 | | Figure 19: | Block diagram Reset | 32 | | Figure 20: | Block diagram power supply carrier board | 35 | | Figure 21: | TQMa8MPxL dimensions, side view | 38 | | Figure 22: | TQMa8MPxL dimensions, top view | 38 | | Figure 23: | TQMa8MPxL dimensions, top through view | 38 | | Figure 24: | TQMa8MPxL, component placement top | 39 | | Figure 25: | TQMa8MPxL, LGA pad numbering scheme, top through view | 39 | # **REVISION HISTORY** | Rev. | Date | Name | Pos. | Modification | |------|------------|---------|---------------------------------|-------------------------------------| | 0100 | 23.03.2022 | Kreuzer | | First issue | | 0101 | 22.11.2022 | Kreuzer | Table 3 | V_SD2 corrected to P _{out} | | 0102 | 30.05.2023 | Kreuzer | Chapter 3.1.1.1 | Number of pads corrected to 366 | | 0103 | 20.03.2024 | Kreuzer | Chapter 3.2.5.20 | Chapter references corrected | | 0104 | 11.04.2024 | Kreuzer | Table 3 | CPU ball assignments corrected | | 0105 | 06.05.2024 | Kreuzer | Table 27 | Table expanded | | 0106 | 11.07.2024 | Kreuzer | Figure 22, Figure 23, Figure 24 | Updated to module revision 0200 | | 0100 | 11.07.2024 | Medzei | 6.5 | Chapter added | #### ABOUT THIS MANUAL ## 1.1 Copyright and license expenses Copyright protected © 2024 by TQ-Systems GmbH. This User's Manual may not be copied, reproduced, translated, changed or distributed, completely or partially in electronic, machine readable, or in any other form without the written consent of TQ-Systems GmbH. The drivers and utilities for the components used as well as the BIOS are subject to the copyrights of the respective manufacturers. The licence conditions of the respective manufacturer are to be adhered to. Bootloader-licence expenses are paid by TQ-Systems GmbH and are included in the price. Licence expenses for the operating system and applications are not taken into consideration and must be calculated / declared separately. #### 1.2 Registered trademarks TQ-Systems GmbH aims to adhere to copyrights of all graphics and texts used in all publications, and strives to use original or license-free graphics and texts. All brand names and trademarks mentioned in this User's Manual, including those protected by a third party, unless specified otherwise in writing, are subjected to the specifications of the current copyright laws and the proprietary laws of the present registered proprietor without any limitation. One should conclude that brand and trademarks are rightly protected by a third party. #### 1.3 Disclaimer TQ-Systems GmbH does not guarantee that the information in this User's Manual is up-to-date, correct, complete or of good quality. Nor does TQ-Systems GmbH assume guarantee for further usage of the information. Liability claims against TQ-Systems GmbH, referring to material or non-material related damages caused, due to usage or non-usage of the information given in this User's Manual, or due to usage of erroneous or incomplete information, are exempted, as long as there is no proven intentional or negligent fault of TQ-Systems GmbH. TQ-Systems GmbH explicitly reserves the rights to change or add to the contents of this User's Manual or parts of it without special notification. ## **Important Notice:** Before using the Starterkit MBa8MPxL or parts of the schematics of the MBa8MPxL, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. TQ-Systems GmbH makes no other warranties including, but not limited to, any implied warranty of merchantability or fitness for a particular purpose. Except where prohibited by law, TQ-Systems GmbH will not be liable for any indirect, special, incidental or consequential loss or damage arising from the usage of the Starterkit MBa8MPxL or schematics used, regardless of the legal theory asserted. ## 1.4 Imprint TQ-Systems GmbH Gut Delling, Mühlstraße 2 #### D-82229 Seefeld Tel: +49 8153 9308-0 Fax: +49 8153 9308-4223 E-Mail: Info@TQ-Group
Web: TQ-Group ## 1.5 Tips on safety Improper or incorrect handling of the product can substantially reduce its life span. ## 1.6 Symbols and typographic conventions Table 1: Terms and conventions | Symbol | Meaning | |-----------|---| | | This symbol represents the handling of electrostatic-sensitive modules and / or components. These components are often damaged / destroyed by the transmission of a voltage higher than about 50 V. A human body usually only experiences electrostatic discharges above approximately 3,000 V. | | 4 | This symbol indicates the possible use of voltages higher than 24 V. Please note the relevant statutory regulations in this regard. Non-compliance with these regulations can lead to serious damage to your health and may damage or destroy the component. | | <u>^!</u> | This symbol indicates a possible source of danger. Ignoring the instructions described can cause health damage, or damage the hardware. | | Â | This symbol represents important details or aspects for working with TQ-products. | | Command | A font with fixed-width is used to denote commands, contents, file names, or menu items. | ## 1.7 Handling and ESD tips # General handling of your TQ-products The TQ-product may only be used and serviced by certified personnel who have taken note of the information, the safety regulations in this document and all related rules and regulations. A general rule is not to touch the TQ-product during operation. This is especially important when switching on, changing jumper settings or connecting other devices without ensuring beforehand that the power supply of the system has been switched off. Violation of this guideline may result in damage / destruction of the TQMa8MPxL and be dangerous to your health. $Improper\ handling\ of\ your\ TQ-product\ would\ render\ the\ guarantee\ invalid.$ ## **Proper ESD handling** The electronic components of your TQ-product are sensitive to electrostatic discharge (ESD). Always wear antistatic clothing, use ESD-safe tools, packing materials etc., and operate your TQ-product in an ESD-safe environment. Especially when you switch modules on, change jumper settings, or connect other devices. ## 1.8 Naming of signals A hash mark (#) at the end of the signal name indicates a low-active signal. Example: RESET# If a signal can switch between two functions and if this is noted in the name of the signal, the low-active function is marked with a hash mark and shown at the end. Example: C / D# If a signal has multiple functions, the individual functions are separated by slashes when they are important for the wiring. The identification of the individual functions follows the above conventions. Example: WE2# / OE# # 1.9 Further applicable documents / presumed knowledge #### • Specifications and manual of the modules used: These documents describe the service, functionality and special characteristics of the module used (incl. BIOS). ## • Specifications of the components used: The manufacturer's specifications of the components used, for example CompactFlash cards, are to be taken note of. They contain, if applicable, additional information that must be taken note of for safe and reliable operation. These documents are stored at TQ-Systems GmbH. #### • Chip errata: It is the user's responsibility to make sure all errata published by the manufacturer of each component are taken note of. The manufacturer's advice should be followed. #### • Software behaviour: No warranty can be given, nor responsibility taken for any unexpected software behaviour due to deficient components. ## • General expertise: Expertise in electrical engineering / computer engineering is required for the installation and the use of the device. The following documents are required to fully comprehend the following contents: - MBa8MPxL circuit diagram - MBa8MPxL User's Manual - i.MX 8M Plus Data Sheet - i.MX 8M Plus Reference Manual • U-Boot documentation: <u>www.denx.de/wiki/U-Boot/Documentation</u> • PTXdist documentation: <u>www.ptxdist.de</u> Yocto documentation: www.yoctoproject.org/docs/ TQ-Support Wiki: Support-Wiki TQMa8MPxL #### 2. BRIEF DESCRIPTION This User's Manual describes the hardware of the TQMa8MPxL as of revision 0100, in combination with the MBa8MPxL as of revision 0100 and refers to some software settings. A certain TQMa8MPxL derivative does not necessarily provide all features described in this User's Manual. This User's Manual does neither replace the i.MX 8M Plus Reference Manual (1), nor the i.MX 8M Plus Data Sheet (2), nor any other documents from NXP. The TQMa8MPxL is a universal Minimodule based on the NXP ARM® Cortex®-A53 based i.MX 8M CPU family, see also Table 4. ## 2.1 Key functions and characteristics The TQMa8MPxL extends the TQ-Systems GmbH product range and offers an outstanding computing performance. All essential i.MX 8M Plus signals are routed to the TQMa8MPxL LGA pads. There are therefore no restrictions for customers using the TQMa8MPxL with respect to an integrated customised design. All essential components like CPU, LPDDR4, eMMC, and PMIC are already integrated on the TQMa8MPxL. The main features of the TQMa8MPxL are: - 64 bit NXP i.MX 8M Plus CPU, up to 4 × ARM Cortex[®]-A53 and 1 × Cortex[®]-M7 - o Plus Dual, Plus Quad 4 Lite, Plus Quad 6 Video, Plus Quad 8 ML/Al - Up to 4 Gbyte 32-bit LPDDR4-4000 - Up to 256 Gbyte eMMC NAND Flash, eMMC standard 5.1 - Up to 256 Mbyte QSPI NOR Flash - 64 Kbit EEPROM (optional) - Temperature sensor + EEPROM - RTC (optinal) - Trust Secure Element (optional) - NXP Power Management Integrated Circuit PCA9450 - All essential i.MX 8M Plus signals are routed to the TQMa8MPxL LGA pads - Single supply voltage 5 V ## 2.2 CPU block diagram Figure 1: Block diagram i.MX 8M Plus (Source: NXP) #### 3. ELECTRONICS The information provided in this User's Manual is only valid in connection with the tailored boot loader, which is preinstalled on the TQMa8MPxL, and the BSP provided by TQ-Systems GmbH, see also chapter 4. Figure 2: Block diagram TQMa8MPxL (simplified) ## 3.1 Interfaces to other systems and devices # 3.1.1 Pin multiplexing The multiple pin configurations by different i.MX 8M Plus-internal function units must be taken note of. The pin assignment in Table 3 refers to a TQMa8MPxL with i.MX 8M Plus Quad 8 ML/AI CPU in combination with the carrier board MBa8MPxL. NXP provides a tool showing the multiplexing and simplifies the selection and configuration (i.MX Pins Tool – NXP Tool). The electrical and pin characteristics are to be taken from the i.MX 8M Plus and PMIC documentation, see Table 40. # Attention: Destruction or malfunction, pin multiplexing Depending on the configuration, many i.MX 8M Plus pins can provide several different functions. Please take note of the information concerning the configuration of these pins in the i.MX 8M Plus Reference Manual (1), before integration or start-up of your carrier board / Starterkit. Improper programming by operating software can cause malfunctions, deterioration or destruction of the TQMa8MPxL. The descriptions given in the following tables should be taken note of: – DNC: These pins must never be connected and have to be left open. Please contact **TQ-Support** for details. # 3.1.1.1 Pinout TQMa8MPxL The TQMa8MPxL has a total of 366 LGA pads. The TQMa8MPxL is soldered and thus permanently connected to the carrier board. It is not trivial and it is not recommended to remove the TQMa8MPxL. The following table shows the TQMa8MPxL pad-out, top view through the TQMa8MPxL. Table 2: Pinout TQMa8MPxL, top view through TQMa8MPxL | | Α | В | С | D | Е | F | G | Н | J | K | L | M | N | Р | R | Т | U | V | W | Υ | AA | АВ | L | |----|---------------------------|-----------------------------|----------------|------------------|----------------|------------------------|---------------------|----------------------|------------------|------------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|------------------|------------------|-------------------------|---------------------|-----------------------|----| | 22 | | USB1_
D_P | USB1_
D_N | GND | DSI_
D1_N | DSI_
D1_P | GND | DSI_
D3_N | DSI_
D3_P | GND | CSI1_
CLK_N | CSI1_
CLK_P | GND | CSI2_
D0_N | CSI2_
D0_P | GND | CSI2_
D2_N | CSI2_
D2_P | GND | PCIE_RE
F_CLKN | | | 22 | | 21 | USB1_
TX_N | GND | | ISO_14
443_LA | GND | DSI_
CLK_N | DSI_
CLK_P | GND | CSI1_
D0_N | CSI1_
D0_P | GND | CSI1_
D2_N | CSI1_
D2_P | GND | CSI2_
D1_N | CSI2_
D1_P | GND | CSI2_
D3_N | CSI2_
D3_P | GND | PCIE_
TXN | PCIE_
TXP | 21 | | 20 | USB1_
TX_P | USB1_
RX_N | GND | DSI_
D0_N | DSI_
D0_P | GND | DSI_
D2_N | DSI_
D2_P | GND | CSI1_
D1_N | CSI1_
D1_P | GND | CSI1_
D3_N | CSI1_
D3_P | GND | CSI2_
CLK_N | CSI2_
CLK_P | GND | PCIE_
RXN | PCIE_
RXP | LVDS1_
D3_P | GND | 20 | | 19 | GND | USB1_
RX_P | USB2
_D_N | USB2
_DNU | GPI01
_I011 | USB1
DNU | GND | USB1
OTG
_OC | ISO_78
16_CLK | GND | JTAG_
TDO | JTAG_
TCK | GND | | BOOT_
MODE2 | BOOT_
MODE1 | TEMP_
EVENT# | M7_
NMI | GND | V_SD1 | LVDS1_
D3_N | LVDS1_
CLK_P | 19 | | 18 | USB2_
TX_N | GND | USB2_
D_P | GPIO1
IO15 | GND | USB1
VBUS | USB1
_OTG
ID | USB1
OTG_
PWR | | ISO_78
16_IO1 | | GND | JTAG_
TMS | JTAG_
TDI | GND | BOOT_
MODE0 | RTC_
EVENT# | GND | CLK1_
IN | GND | LVDS1_
D2_P | LVDS1_
CLK_N | 18 | | 17 | USB2_
TX_P | USB2_
RX_N | GND |
GPIO1
IO14 | USB2
VBUS | | | | | | | | | | | | | CLK2_
OUT | CLK1_
OUT | LVDS1
_D1_P | LVDS1
_D2_N | GND | 17 | | 16 | GND | USB2_
RX_P | GPIO3
_IO14 | GND | GPIO1
IO00 | | | | | | | | | | | | | GND | CLK2
IN | LVDS1
_D1_N | GND | LVDS1_
D0_P | 16 | | | V_SAI2_
SAI3_
SPDIF | V_SAI1_
SAI5 | GND | V_
LICELL | GPIO1
_IO01 | | | | | | | | | | | | | QSPI_A
_SS0# | QSPI_A
SCLK | GND | LVDS0
D3_P | LVDS1_
D0_N | 15 | | 14 | GND | I2C4_
SCL | I2C1_
SCL | GND | GPIO1
_IO03 | | | | | | | | | | | | | QSPI_A
DATA0 | GND | LVDS0
CLK_P | LVDS0_
D3_N | GND | 14 | | 13 | SAI3_
TXD0 | I2C4_
SDA | I2C2_
SCL | I2C1_
SDA | GND | | | | | | | | | | | | | | QSPI_A
DATA2 | | GND | LVDS0
D2_P | 13 | | 12 | SAI3_
RXD0 | SAI3_
TXC | I2C2_
SDA | GND | GPIO1
_IO06 | | | | | | | | | | | | | UART1
_RXD | QSPI_A
DATA3 | GND | LVDS0
D1_P | LVDS0_
D2_N | 12 | | 11 | GND | SAI3_
TXFS | GND | GPIO1
_IO09 | GPIO1
_IO07 | | | | | | | | | | | | | UART1
_TXD | GND | LVDS0
_D0_P | LVDS0
_D1_N | GND | 11 | | 10 | GPIO4
IO29 | GND | SAI3
MCLK | PWM3 | GND | | | | | | | | | | | | | I2C6_
SCL | I2C6_
SDA | LVDS0
_D0_N | ENET
_QOS
TD3 | V_ENET | 10 | | 9 | GPIO4
_IO28 | ENET_Q
OS_EVE
NT2 IN | | GND | GPIO5
_IO27 | GPIO5
_IO26 | RFU | GND | | | | | | | GND | V_SD2 | GPIO2
_IO07 | UART2
_TXD | UART2
_RXD | ENET
_QOS
TD2 | GND | ENET
_QOS
TXC | 9 | | 8 | GND | ENET_QO
S_EVENT
2_OUT | GND | GPT2_
CLK | GND | PMIC_
WDOG_
OUT# | GND | RFU | | | | | | | RFU | GND | GPIO2
_IO06 | UART3
_RXD | GND | ENET
QOS
TX_CTL | ENET
_QOS | ENET
_QOS
_TD1 | 8 | | 7 | GPIO4
_IO22 | GND | GPIO4
_IO24 | GND | RESET
_IN# | RESET _OUT# | ONOFF | GND | | | | | | | GND | SD2_
WP | SD2_
RST# | UART3
_TXD | GPIO2
_IO11 | ENET
_QOS
_RD3 | _TD0 | ENET
_QOS
_RXC | 7 | | 6 | GPIO4
_IO27 | GPIO4
_IO21 | GND | GND | PMIC
RST# | PMIC
WDOG_ | UART4_
TXD | UART4_
RXD | ECSPI3_
MOSI | GND | GPIO5
_IO05 | GPIO5
_IO03 | GND | ECSPI2
SS0 | SD2
CD# | GND | SD2_
CMD | GPIO2
_IO10 | GND | ENET
QOS | ENET _QOS | GND | 6 | | 5 | GND | GND | GND | GND | GND | IN#
GND | V_3V3
_SD | ECSPI3
_SS0 | ECSPI3
_MISO | ECSPI3
_SCLK | GPIO5
_IO04 | ECSPI2
_SCLK | ECSPI2
_MISO | ECSPI2
MOSI | GND | SD2
DATA3 | SD2_
DATA2 | SD2_
DATA1 | SD2_
DATA0 | MDIO
ENET_
QOS_ | _RD2 | ENET
_QOS | 5 | | 4 | V_5V
_IN | V_5V
_IN | V_5V
_IN | GND | GND | GND | ENETO
_INT# | ENET1 | GND | ENETO
_RST# | ENET1
RST# | GND | GPIO4 | ENET
RX_CTL | | SD2_
CLK | GND | EARC_
AUX | HDMI_
CEC | MDC
GND | ENET_
QOS_ | _RD1
ENET
_QOS | 4 | | 3 | V_5V
IN | V_5V
_IN | V_5V
_IN | GND | GND | GND | GND | ENET
_MDC | ENET
_MDIO | GND | ENET _RD2 | ENET
_RD3 | GND | ENET
_TD2 | ENET
TD3 | GND | | HDMI
TXC_P | GND | HDMI_
HPD | RX_CTL
GND | _RD0
HDMI_
DDC_ | 3 | | 2 | GPIO3
_IO20 | GND | GPIO3
_IO21 | GPIO3
_IO19 | GND | GPIO5
_IO09 | GPIO5
_IO08 | GND | ENET _RD0 | ENET
_RD1 | GND | ENET _TD0 | ENET
_TD1 | GND | ENET
_TXC | GPIO4
IO19 | GND | HDMI | HDMI_
TX0_P | HDMI_ | HDMI_
TX2_P | SCL
HDMI_
DDC_ | 2 | | 1_ | | | CAN_F
D1_RX | CAN_F | | GND | GPIO5
_IO07 | GPIO5
_IO06 | GND | ENET
_RXC | GPIO4
_IO20 | GND | | V_3V3 | GND | | EARC_P
UTIL | GND | HDMI_
TX1_N | HDMI_ | GND | SDA | 1 | | | A | B B | C C | D2_1X | E
E | F | _1007 | _1006
H | J | K | _1020 | M | N | P | R | Т | U | V | W | Y | AA | AB | | # 3.1.1.2 TQMa8MPxL signals Details about the electrical characteristics of single pins and interfaces are to be taken from the i.MX 8M Plus documentation (1), (2), (3), as well as the PMIC Data Sheet (4). Table 3: TQMa8MPxL, signals | CPU-Ball | Signal | Group | Dir. | Level | TQMa8MPxL-Pad | |----------|------------|-------|------|-------------|---------------| | G10 | BOOT_MODE0 | ВООТ | l | 3.3 V | T18 | | F8 | BOOT_MODE1 | BOOT | l | 3.3 V | T19 | | G8 | BOOT_MODE2 | BOOT | I | 3.3 V | R19 | | G12 | BOOT_MODE3 | ВООТ | l | 3.3 V | P19 | | AF16 | CAN_FD1_RX | CAN | l | V_SAI1_SAI5 | C1 | | AD16 | CAN_FD1_TX | CAN | 0 | V_SAI1_SAI5 | B1 | | AF14 | CAN_FD2_RX | CAN | l | V_SAI1_SAI5 | E1 | | AE14 | CAN_FD2_TX | CAN | 0 | V_SAI1_SAI5 | D1 | | K28 | CLK1_IN | CLK | ı | 1.8 V | W18 | | K29 | CLK1_OUT | CLK | 0 | 1.8 V | W17 | | L28 | CLK2_IN | CLK | I | 1.8 V | W16 | | L29 | CLK2_OUT | CLK | 0 | 1.8 V | V17 | | E22 | CSI1_CLK_N | CSI | I | 1.8 V | L22 | | D22 | CSI1_CLK_P | CSI | I | 1.8 V | M22 | | E18 | CSI1_D0_N | CSI | I | 1.8 V | J21 | | D18 | CSI1_D0_P | CSI | I | 1.8 V | K21 | | E20 | CSI1_D1_N | CSI | I | 1.8 V | K20 | | D20 | CSI1_D1_P | CSI | I | 1.8 V | L20 | | E24 | CSI1_D2_N | CSI | I | 1.8 V | M21 | | D24 | CSI1_D2_P | CSI | I | 1.8 V | N21 | | E26 | CSI1_D3_N | CSI | I | 1.8 V | N20 | | D26 | CSI1_D3_P | CSI | I | 1.8 V | P20 | | B23 | CSI2_CLK_N | CSI | I | 1.8 V | T20 | | A23 | CSI2_CLK_P | CSI | I | 1.8 V | U20 | | B25 | CSI2_D0_N | CSI | I | 1.8 V | P22 | | A25 | CSI2_D0_P | CSI | I | 1.8 V | R22 | | B24 | CSI2_D1_N | CSI | I | 1.8 V | R21 | | A24 | CSI2_D1_P | CSI | I | 1.8 V | T21 | | B22 | CSI2_D2_N | CSI | I | 1.8 V | U22 | | A22 | CSI2_D2_P | CSI | I | 1.8 V | V22 | | B21 | CSI2_D3_N | CSI | I | 1.8 V | V21 | | A21 | CSI2_D3_P | CSI | I | 1.8 V | W21 | | B18 | DSI_CLK_N | DSI | 0 | 1.8 V | F21 | | A18 | DSI_CLK_P | DSI | 0 | 1.8 V | G21 | | B16 | DSI_D0_N | DSI | 0 | 1.8 V | D20 | | A16 | DSI_D0_P | DSI | 0 | 1.8 V | E20 | | B17 | DSI_D1_N | DSI | 0 | 1.8 V | E22 | | A17 | DSI_D1_P | DSI | 0 | 1.8 V | F22 | | B19 | DSI_D2_N | DSI | 0 | 1.8 V | G20 | | A19 | DSI_D2_P | DSI | 0 | 1.8 V | H20 | | B20 | DSI_D3_N | DSI | 0 | 1.8 V | H22 | | A20 | DSI_D3_P | DSI | 0 | 1.8 V | J22 | Table 3: TQMa8MPxL, signals (continued) | CPU | Signal | Group | Dir. | Level | TQMa8MPxL | |--------------|----------------------------|--------------|------|-------------------|-----------| | AH20 | ECSPI2_MISO | ECSPI | I | 1.8 V | N5 | | AJ21 | ECSPI2_MOSI | ECSPI | 0 | 1.8 V | P5 | | AH21 | ECSPI2_SCLK | ECSPI | 0 | 1.8 V | M5 | | AJ22 | ECSPI2_SS0 | ECSPI | 0 | 1.8 V | P6 | | AF6 | ECSPI3_MISO | ECSPI | I | 3.3 V | J5 | | AJ3 | ECSPI3_MOSI | ECSPI | 0 | 3.3 V | J6 | | AD6 | ECSPI3_SCLK | ECSPI | 0 | 3.3 V | K5 | | AH4 | ECSPI3_SS0 | ECSPI | 0 | 3.3 V | H5 | | AJ9 | ENETO_RST# | ENET | 0 | V_SAI1_SAI5 | K4 | | AH8 | ENETO_INT# | ENET | I | V_SAI1_SAI5 | G4 | | AC10 | ENET1_RST# | ENET | 0 | V_SAI1_SAI5 | L4 | | AF10 | ENET1_INT# | ENET | I | V_SAI1_SAI5 | H4 | | AH9 | ENET_MDC | ENET | 0 | V_SAI1_SAI5 | H3 | | AJ8 | ENET_MDIO | ENET | I/O | V_SAI1_SAI5 | J3 | | AH28 | ENET_QOS_MDC | ENET | 0 | V_ENET | Y5 | | AH29 | ENET_QOS_MDIO | ENET | I/O | V_ENET | Y6 | | AG29 | ENET_QOS_RD0 | ENET | I | V_ENET | AB4 | | AG28 | ENET_QOS_RD1 | ENET | l | V_ENET | AB5 | | AF29 | ENET_QOS_RD2 | ENET | l | V_ENET | AA6 | | AF28 | ENET_QOS_RD3 | ENET | l | V_ENET | Y7 | | AE28 | ENET_QOS_RX_CTL | ENET | l | V_ENET | AA4 | | AE29 | ENET_QOS_RXC | ENET | I | V_ENET | AB7 | | AC25 | ENET_QOS_TD0 | ENET | 0 | V_ENET | AA8 | | AE26
AF26 | ENET_QOS_TD1 ENET_QOS_TD2 | ENET
ENET | 0 | V_ENET
V_ENET | AB8
Y9 | | AD24 | ENET_QOS_TD3 | ENET | 0 | V_ENET | AA10 | | AF24 | ENET_QOS_TX_CTL | ENET | 0 | V_ENET | Y8 | | AE24 | ENET_QOS_TXC | ENET | 0 | V_ENET | AB9 | | AJ14 | ENET_QOS_EVENT2_OUT | ENET | 0 | V_SAI2_SAI3_SPDIF | B8 | | AH16 | ENET_QOS_EVENT2_IN | ENET | ı | V_SAI2_SAI3_SPDIF | B9 | | AD10 | ENET_RD0 | ENET | 1 | V_SAI1_SAI5 | J2 | | AE10 | ENET_RD1 | ENET | 1 | V_SAI1_SAI5 | K2 | | AH10 | ENET_RD2 | ENET | ı | V_SAI1_SAI5 | L3 | | AH12 | ENET_RD3 | ENET | ı | V_SAI1_SAI5 | M3 | | AF12 | ENET_RX_CTL | ENET | I | V_SAI1_SAI5 | P4 | | AJ12 | ENET_RXC | ENET | I | V_SAI1_SAI5 | K1 | | AJ11 | ENET_TD0 | ENET | 0 | V_SAI1_SAI5 | M2 | | AJ10 | ENET_TD1 | ENET | 0 | V_SAI1_SAI5 | N2 | | AH11 | ENET_TD2 | ENET | 0 | V_SAI1_SAI5 | P3 | | AD12 | ENET_TD3 | ENET | 0 | V_SAI1_SAI5 | R3 | | AE12 | ENET_TX_CLK | ENET | 0 | V_SAI1_SAI5 | L1 | | AH13 | ENET_TX_CTL | ENET | 0 | V_SAI1_SAI5 | R4 | | AH14 | ENET_TXC | ENET | 0 | V_SAI1_SAI5 | R2 | | B4 | M7_NMI | Event | I | 3.3 V | V19 | | - | RTC_EVENT# | Event | 0 | OD | U18 | | - | TEMP_EVENT# | Event | 0 | OD | U19 | Table 3: TQMa8MPxL, signals (continued) | CPU | Signal | Group | Dir. | Level | TQMa8MPxL | |--------------|--------------------------|--------------|------|-------------------|-----------| | A7 | | GPIO | 1/0 | 3.3 V | E16 | | E8 | GPIO1_IO00
GPIO1_IO01 | GPIO | 1/0 | 3.3 V | E15 | | D6 | GPIO1_IO03 | GPIO | 1/0 | 3.3 V | E14 | | A3 | GPIO1_IO06 | GPIO | 1/0 | 3.3 V | E12 | | F6 | GPIO1_IO07 | GPIO | 1/0 | 3.3 V | E11 | | B8 | GPIO1_IO09 | GPIO | 1/0 | 3.3 V | D11 | | D8 | GPIO1_IO11 | GPIO | 1/0 | 3.3 V | E19 | | A4 | GPIO1_IO14 | GPIO | I/O | 3.3 V | D17 | | B5 | GPIO1_IO15 | GPIO | I/O | 3.3 V | D18 | | U26 | GPIO2_IO06 | GPIO | I/O | V_SD1 | U8 | | AA29 | GPIO2_IO07 | GPIO | I/O | V_SD1 | U9 | | W25 | GPIO2_IO10 | GPIO | I/O | V_SD1 | V6 | | W26 | GPIO2_IO11 | GPIO | I/O | V_SD1 | W7 | | R26 | GPIO3_IO14 | GPIO | I/O | 1.8 V | C16 | | AC14 | GPIO3_IO19 | GPIO | I/O | V_SAI1_SAI5 | D2 | | AD14 | GPIO3_IO20 | GPIO | I/O | V_SAI1_SAI5 | A2 | | AE16 | GPIO3_IO21 | GPIO | I/O | V_SAI1_SAI5 | C2 | | AC12 | GPIO4_IO18 | GPIO | I/O | V_SAI1_SAI5 | N4 | | AJ13 | GPIO4_IO19 | GPIO | I/O | V_SAI1_SAI5 | T2 | | AH17 | GPIO4_IO21 | GPIO | I/O | V_SAI2_SAI3_SPDIF | B6 | | AJ16 | GPIO4_IO22 | GPIO | I/O | V_SAI2_SAI3_SPDIF | A7 | | AJ17 | GPIO4_IO24 | GPIO | I/O | V_SAI2_SAI3_SPDIF | C7 | | AH15 | GPIO4_IO25 | GPIO | I/O | V_SAI2_SAI3_SPDIF | C9 | | AJ15 | GPIO4_IO27 | GPIO | I/O | V_SAI2_SAI3_SPDIF | A6 | | AJ19 | GPIO4_IO28 | GPIO | I/O | V_SAI2_SAI3_SPDIF | A9 | | AJ18 | GPIO4_IO29 |
GPIO | I/O | V_SAI2_SAI3_SPDIF | A10 | | AE18 | GPIO5_IO03 | GPIO | I/O | V_SAI2_SAI3_SPDIF | M6 | | AD18 | GPIO5_IO04 | GPIO | I/O | V_SAI2_SAI3_SPDIF | L5 | | AC18 | GPIO5_IO05 | GPIO | I/O | V_SAI2_SAI3_SPDIF | L6 | | AF20 | GPIO5_IO06 | GPIO | I/O | 1.8 V | H1 | | AC20 | GPIO5_IO07 | GPIO | I/O | 1.8 V | G1 | | AD20 | GPIO5_IO08 | GPIO | I | 1.8 V | G2 | | AE20 | GPIO5_IO09 | GPIO | 0 | 1.8 V | F2 | | AJ4 | GPIO5_IO27 | GPIO | I/O | 3.3 V | E9 | | AE6 | GPIO5_IO26 | GPIO | I/O | 3.3 V | F9 | | AJ7 | GPT2_CLK | GPT | I/O | 3.3 V | D8 | | AH23 | EARC_AUX | HDMI | 0 | 1.8 V | V4 | | AH22 | EARC_N_HPD | HDMI | I | 1.8 V | T1 | | AJ23 | EARC_P_UTIL | HDMI | 0 | 1.8 V | U1 | | AD22 | HDMI_CEC | HDMI | 0 | 1.8 V | W4 | | AC22 | HDMI_DDC_SCL | HDMI | 0 | 1.8 V | AB3 | | AF22 | HDMI_DDC_SDA
HDMI_HPD | HDMI | 1/0 | 1.8 V | AB2 | | AE22
AJ25 | HDMI_TX0_N | HDMI
HDMI | 0 | 1.8 V
1.8 V | Y3
V2 | | AJ25
AH25 | HDMI_TX0_N HDMI_TX0_P | HDMI | 0 | 1.8 V | W2 | | AH23
AJ26 | HDMI_TX1_N | HDMI | 0 | 1.8 V | W1 | | 7.520 | TIDMI_IXI_IV | 1101111 | | 1.5 V | ** 1 | Table 3: TQMa8MPxL, signals (continued) | CPU | Signal | Group | Dir. | Level | TQMa8MPxL | |------|--------------|-----------|------|-------|-----------| | AH26 | HDMI_TX1_P | HDMI | 0 | 1.8 V | Y1 | | AJ27 | HDMI_TX2_N | HDMI | 0 | 1.8 V | Y2 | | AH27 | HDMI_TX2_P | HDMI | 0 | 1.8 V | AA2 | | AJ24 | HDMI_TXC_N | HDMI | 0 | 1.8 V | U3 | | AH24 | HDMI_TXC_P | HDMI | 0 | 1.8 V | V3 | | AC8 | I2C1_SCL | I2C | 0 | 3.3 V | C14 | | AH7 | I2C1_SDA | I2C | I/O | 3.3 V | D13 | | AH6 | I2C2_SCL | I2C | 0 | 3.3 V | C13 | | AE8 | I2C2_SDA | I2C | I/O | 3.3 V | C12 | | AF8 | I2C4_SCL | I2C | 0 | 3.3 V | B14 | | AD8 | I2C4_SDA | I2C | I/O | 3.3 V | B13 | | Y29 | I2C6_SCL | I2C | 0 | V_SD1 | V10 | | Y28 | I2C6_SDA | I2C | I/O | V_SD1 | W10 | | - | ISO_7816_CLK | ISO_7816 | I | 3.3 V | J19 | | - | ISO_7816_IO1 | ISO_7816 | I/O | 3.3 V | K18 | | - | ISO_7816_IO2 | ISO_7816 | I/O | 3.3 V | J18 | | - | ISO_7816_RST | ISO_7816 | I | 3.3 V | L18 | | - | ISO_14443_LA | ISO_14443 | I/O | 3.3 V | D21 | | - | ISO_14443_LB | ISO_14443 | I/O | 3.3 V | C21 | | G18 | JTAG_TCK | JTAG | I | 3.3 V | M19 | | G16 | JTAG_TDI | JTAG | I | 3.3 V | P18 | | F14 | JTAG_TDO | JTAG | 0 | 3.3 V | L19 | | G14 | JTAG_TMS | JTAG | I | 3.3 V | N18 | | G28 | LVDS0_CLK_N | LVDS | 0 | 1.8 V | Y13 | | F29 | LVDS0_CLK_P | LVDS | 0 | 1.8 V | Y14 | | E28 | LVDS0_D0_N | LVDS | 0 | 1.8 V | Y10 | | D29 | LVDS0_D0_P | LVDS | 0 | 1.8 V | Y11 | | F28 | LVDS0_D1_N | LVDS | 0 | 1.8 V | AA11 | | E29 | LVDS0_D1_P | LVDS | 0 | 1.8 V | AA12 | | H28 | LVDS0_D2_N | LVDS | 0 | 1.8 V | AB12 | | G29 | LVDS0_D2_P | LVDS | 0 | 1.8 V | AB13 | | J28 | LVDS0_D3_N | LVDS | 0 | 1.8 V | AA14 | | H29 | LVDS0_D3_P | LVDS | 0 | 1.8 V | AA15 | | B28 | LVDS1_CLK_N | LVDS | 0 | 1.8 V | AB18 | | A28 | LVDS1_CLK_P | LVDS | 0 | 1.8 V | AB19 | | B26 | LVDS1_D0_N | LVDS | 0 | 1.8 V | AB15 | | A26 | LVDS1_D0_P | LVDS | 0 | 1.8 V | AB16 | | B27 | LVDS1_D1_N | LVDS | 0 | 1.8 V | Y16 | | A27 | LVDS1_D1_P | LVDS | 0 | 1.8 V | Y17 | | C28 | LVDS1_D2_N | LVDS | 0 | 1.8 V | AA17 | | B29 | LVDS1_D2_P | LVDS | 0 | 1.8 V | AA18 | | D28 | LVDS1_D3_N | LVDS | 0 | 1.8 V | AA19 | | C29 | LVDS1_D3_P | LVDS | 0 | 1.8 V | AA20 | Table 3: TQMa8MPxL, signals (continued) | CPU | Signal | Group | Dir. | Level | TQMa8MPxL | |------|----------------|-------|------|-------------------|-----------| | E16 | PCIE_REF_CLKN | PCle | I/O | 1.8 V | Y22 | | D16 | PCIE_REF_CLKP | PCle | I/O | 1.8 V | AA22 | | B14 | PCIE_RXN | PCle | I | 1.8 V | W20 | | A14 | PCIE_RXP | PCle | I | 1.8 V | Y20 | | B15 | PCIE_TXN | PCle | 0 | 1.8 V | AA21 | | A15 | PCIE_TXP | PCle | 0 | 1.8 V | AB21 | | AJ6 | PWM3 | PWM | 0 | 3.3 V | D10 | | R25 | QSPI_A_DATA0 | QSPI | I/O | 1.8 V | V14 | | L25 | QSPI_A_DATA1 | QSPI | I/O | 1.8 V | V13 | | L24 | QSPI_A_DATA2 | QSPI | I/O | 1.8 V | W13 | | N24 | QSPI_A_DATA3 | QSPI | I/O | 1.8 V | W12 | | N25 | QSPI_A_SCLK | QSPI | 0 | 1.8 V | W15 | | L26 | QSPI_A_SS0# | QSPI | 0 | 1.8 V | V15 | | - | PMIC_RST# | Reset | I | 1.8 V | E6 | | - | PMIC_WDOG_IN# | Reset | I | 3.3 V | F6 | | В6 | PMIC_WDOG_OUT# | Reset | 0 | 3.3 V | F8 | | - | RESET_IN# | Reset | I | OD | E7 | | - | RESET_OUT# | Reset | 0 | OD | F7 | | AJ20 | SAI3_MCLK | SAI | 0 | V_SAI2_SAI3_SPDIF | C10 | | AF18 | SAI3_RXD0 | SAI | I | V_SAI2_SAI3_SPDIF | A12 | | AC16 | SAI3_TXFS | SAI | 0 | V_SAI2_SAI3_SPDIF | B11 | | AH19 | SAI3_TXC | SAI | 0 | V_SAI2_SAI3_SPDIF | B12 | | AH18 | SAI3_TXD0 | SAI | 0 | V_SAI2_SAI3_SPDIF | A13 | | AD29 | SD2_CD# | SD | I | 1.8/ 3.3 V | R6 | | AB29 | SD2_CLK | SD | 0 | 1.8/ 3.3 V | T4 | | AB28 | SD2_CMD | SD | I/O | 1.8/ 3.3 V | U6 | | AC28 | SD2_DATA0 | SD | I/O | 1.8/ 3.3 V | W5 | | AC29 | SD2_DATA1 | SD | I/O | 1.8/ 3.3 V | V5 | | AA26 | SD2_DATA2 | SD | I/O | 1.8/ 3.3 V | U5 | | AA25 | SD2_DATA3 | SD | I/O | 1.8/ 3.3 V | T5 | | AD28 | SD2_RST# | SD | 0 | 1.8/ 3.3 V | U7 | | AC26 | SD2_WP | SD | I | 1.8/ 3.3 V | T7 | #### TQMa8MPxL signals (continued) 3.1.1.2 Table 3: TQMa8MPxL, signals (continued) | CPU | Signal | Group | Dir. | Level | TQMa8MPxL | |------|-------------------|--|--|---|--| | G22 | ONOFF | SNVS | ı | 1.8 V | G7 | | W29 | UART1_RXD | UART | ı | V_SD1 | V12 | | W28 | UART1_TXD | UART | 0 | V_SD1 | V12 | | V28 | UART2_RXD | UART | ı | V_SD1 | W9 | | | | UART | | _ | | | V29 | UART2_TXD | - | 0 | V_SD1 | V9 | | U25 | UART3_RXD | UART | I | V_SD1 | V8 | | AA28 | UART3_TXD | UART | 0 | V_SD1 | V7 | | AJ5 | UART4_RXD | UART | I | 3.3 V | H6 | | AH5 | UART4_TXD | UART | 0 | 3.3 V | G6 | | E10 | USB1_D_N | USB | I/O | 3.3 V | C22 | | D10 | USB1_D_P | USB | I/O | 3.3 V | B22 | | B11 | USB1_DNU | USB | _ | 3.3 V | F19 | | B7 | USB1_OTG_ID | USB | I | 3.3 V | G18 | | A6 | USB1_OTG_OC | USB | I | 3.3 V | H19 | | A5 | USB1_OTG_PWR | USB | 0 | 3.3 V | H18 | | B9 | USB1_RX_N | USB | I | 3.3 V | B20 | | A9 | USB1_RX_P | USB | I | 3.3 V | B19 | | B10 | USB1_TX_N | USB | 0 | 3.3 V | A21 | | A10 | USB1_TX_P | USB | 0 | 3.3 V | A20 | | A11 | USB1_VBUS | USB | Р | 5 V | F18 | | E14 | USB2_D_N | USB | I/O | 3.3 V | C19 | | D14 | USB2_D_P | USB | I/O | 3.3 V | C18 | | E12 | USB2_DNU | USB | - | 3.3 V | D19 | | B12 | USB2_RX_N | USB | <u> </u> | 3.3 V | B17 | | A12 | USB2_RX_P | USB | I | 3.3 V | B16 | | B13 | USB2_TX_N | USB | 0 | 3.3 V | A18 | | A13 | USB2_TX_P | USB | 0 | 3.3 V | A17 | | D12 | USB2_VBUS | USB | P | 5 V
AA1, AA13, AA16, AA3, | E17 | | _ | GND | AB14, AB17, AB20
C6, C8, D12, D14,
E3, E4, E5, E8, F1, F
J4, K19, K22, K3, K
R1, R18, R20, R5, | , AB6, B10,
D16, D22, E
-20, F3, F4, I
6, L2, L21, M
R7, R9, T22 | B18, B2, B21, B5, B7, C
D3, D4, D5, D6, D7, D9,
F5, G19, G22, G3, G8, H
M1, M18, M20, M4, N19
, T3, T6, T8, U2, U21, U
D5, W8, Y12, Y15, Y18, Y2 | 11, C15, C17, C20, C5,
E10, E13, E18, E2, E21,
2, H21, H7, H9, J1, J20,
, N22, N3, N6, P2, P21,
J4, V1, V16, V18, V20, | | - | V_1V8 | Power | P _{out} | 1.8 V ¹ | N1 | | - | V_3V3 | Power | Pout | 3.3 V ¹ | P1 | | - | V_3V3_SD | Power | P _{out} | 3.3 V ² | G5 | | - | V_5V_IN | Power | Pin | 5 V | A3, A4, B3, B4, C3, C4 | | AA24 | V_ENET | Power | Pin | 1.8 / 3.3 V | AB10 | | - | V_LICELL | Power | Pin | 3 V | D15 | | Y11 | V_SAI1_SAI5 | Power | P _{in} | 1.8 / 3.3 V | B15 | | AA11 | V_SAI2_SAI3_SPDIF | Power | P _{in} | 1.8 / 3.3 V | A15 | | U24 | V_SD1 | Power | P _{in} | 1.8 / 3.3 V | Y19 | | - | V_SD2 | Power | P _{out} | 1.8 / 3.3 V | T9 | | - | RFU | Reserved for | future use. | Do not connect. | G9, H8, R8 | Maximum load of 500 mA. ^{1:} 2: Maximum load of 400 mA. ## 3.2 System components #### 3.2.1 i.MX 8M Plus #### 3.2.1.1 i.MX 8M Plus derivatives Depending on the TQMa8MPxL version, one of the following i.MX 8M Plus derivatives is assembled. Table 4: i.MX 8M Plus derivatives | TQMa8MPxL version | i.MX 8M Plus derivative | i.MX 8M Plus clocks | Temperature range | |----------------------|---------------------------|---------------------------|-------------------| | TQMa8MPDL-XX | i.MX 8M Plus Dual | A53: 1.6 GHz, M7: 800 MHz | −40 °C +105 °C | | TQMa8MPQLL-AA | i.MX 8M Plus Quad 4 Lite | A53: 1.6 GHz, M7: 800 MHz | −40 °C +105 °C | | TQMa8MPQL-AA | i.MX 8M Plus Quad 6 Video | A53: 1.6 GHz, M7: 800 MHz | −40 °C +105 °C | | TQMa8MPQL-A B | i.MX 8M Plus Quad 8 ML/AI | A53: 1.6 GHz, M7: 800 MHz | −40 °C +105 °C | #### 3.2.1.2 i.MX 8M Plus errata Attention: Destruction or malfunction, i.MX 8M Plus errata Please take note of the current i.MX 8M Plus errata (5). ## 3.2.1.3 Boot modes The i.MX 8M Plus has a ROM with integrated boot loader. After the release of PMIC_POR# the System Controller (SCU) boots from the internal ROM and then loads the program image from the selected boot device. For example, the integrated eMMC or the optional QSPI NOR Flash can be selected as the default boot device. The following boot sources are supported by TQMa8MPxL: - eMMC - QSPI NOR Flash - USB OTG - SD card Alternatively, an image can be loaded into the internal RAM using the serial downloader. More information about the boot flow can be found in the Reference Manual (1), and the Data Sheet (2) of i.MX 8M Plus. # 3.2.1.4 Boot configuration The i.MX 8M Plus uses four BOOT_MODE signals available on the TQMa8MPxL's LGA pads. These require pull-up/pull-down wiring to 3.3 V and Ground. The exact boot behaviour depends on the BT_FUSE_SEL register value. Booting from USDHC1 is only possible on the i.MX 8M Plus after burning the eFuses. The following table shows the behaviour in dependence of
BT_FUSE_SEL and selected boot mode: Table 5: Boot configuration i.MX 8M Plus | Boot source | BOOT_MODE3 | BOOT_MODE2 | BOOT_MODE1 | BOOT_MODE0 | |---|------------|------------|------------|------------| | Boot from eFuse | 0 | 0 | 0 | 0 | | USB Serial Downloader | 0 | 0 | 0 | 1 | | Boot from USDHC3 (eMMC) | 0 | 0 | 1 | 0 | | Boot from USDHC2 (SD card) | 0 | 0 | 1 | 1 | | Boot from NAND (not supported) | 0 | 1 | 0 | x | | Boot from QSPI (3 Byte Read) | 0 | 1 | 1 | 0 | | Boot from QSPI (Hyperflash) (not supported) | 0 | 1 | 1 | 1 | | Boot from eCSPI (not supported) | 1 | 0 | 0 | 0 | | (Reserved) | 1 | 0 | 0 | 1 | ## 3.2.2 Memory #### 3.2.2.1 LPDDR4 SDRAM The memory interface of the i.MX 8M Plus supports DDR4 and LPDDR4 memory (32 bit bus) with a maximum clock rate of 2.0 GHz, which meets JEDEC LPDDR4-4000 standard. The TQMa8MPxL exclusively uses LPDDR4. A maximum of 8 Gbyte of LPDDR4 SDRAM is supported. ## 3.2.2.2 eMMC An eMMC is provided on the TQMa8MPxL for boot loader, operating system and application software. It is connected to the i.MX 8M Plus via USDHC3. Figure 3: Block diagram eMMC The i.MX 8M Plus supports transfer modes up to the current eMMC standard v5.1 according to JESD84-B51. In DDR mode (HS400) data rates of up to 400 Mbyte/s can be achieved. The boot configuration is described in chapter 3.2.1.3 #### 3.2.2.3 QSPI NOR Flash QSPI NOR flash can optionally be assembled on the TQMa8MPxL. If no QSPI NOR Flash is populated on the TQMa8MPxL, the LGA pads of the interface can be used. Since it is not possible to separate the signal paths, these LGA pads must not be wired when the NOR Flash is equipped. # 3.2.2.4 EEPROM 24LC64T A serial EEPROM, controlled by the I2C1 bus, is assembled. Write-Protection (WP) is not supported. A 64 Kbit EEPROM 24LC64T is assembled by default on the TQMa8MPxL. Figure 4: Block diagram EEPROM ## 3.2.2.5 EEPROM with temperature sensor SE97BTP A serial EEPROM including temperature sensor type SE97BTP, controlled by the I2C1 bus, is assembled on the TQMa8MPxL. The lower 128 bytes (address 00h to 7Fh) can be set to Permanent Write-Protected mode (PWP) or to Reversible Write-Protected mode (RWP) by software. The upper 128 bytes (address 80h to FFh) cannot be write-protected and are available for general data storage. The overtemperature output of the SE97BTP is connected as open drain to TQMa8MPxL LGA pad U19 (TEMP_EVENT#). This requires a pull-up to 3.3 V (maximum 5.5 V) on the carrier board. The device is assembled on the top side of the TQMa8MPxL, see component D12, Figure 22. The device provides the following I2C addresses: o EEPROM (Normal Mode): 0x53 / 101 0011b o EEPROM (Protection Mode): 0x33 / 011 0011b o Temperature sensor: 0x1B / 001 1011b #### 3.2.3 Trust Secure Element SE050 An NXP Trust Secure Element SE050 is available on the TQMa8MPxL as an assembly option. When equipped, the chip provides two interfaces according to ISO 7816 and ISO 14443. Among other things, antennas can be connected to these. The SE050 is controlled by the I2C1 bus. More details can be found in (8). ➤ The Trust Secure Element has I²C address 0x48 / 100 1000b #### 3.2.4 RTC The TQMa8MPxL provides an i.MX 8M Plus-internal RTC or a discrete RTC PCF85063A. #### 3.2.4.1 i.MX 8M Plus internal RTC The i.MX 8M Plus provides an RTC, which has its own power domain (V_1V8_SNVS). The RTC power domain SNVS of the i.MX 8M Plus is supplied by the PMIC. The PMIC is supplied by the TQMa8MPxL input voltage of V_5V_IN. The quartz used to clock the RTC has a standard frequency tolerance of ± 20 ppm @ ± 25 °C. Figure 5: Block diagram RTC supply (TQMa8MPxL without discrete RTC) ## Note: RTC power supply The CPU internal RTC can be used in regular operation. If the TQMa8MPxL supply (5 V) fails, it is no longer available, since the i.MX 8M Plus's SNVS rail is no longer supplied. ## 3.2.4.2 Discrete RTC PCF85063A In addition to the i.MX 8M Plus internal RTC the TQMa8MPxL provides a discrete RTC PCF85063A as an assembly option, which is controlled by the I2C1 bus. The quartz used to clock the RTC has a standard frequency tolerance of ± 20 ppm @ ± 25 °C. The discrete RTC has an interrupt output which provides the open-drain signal RTC_EVENT# at LGA pad U18. This pin requires a pull-up to 3.3 V (maximum 3.6 V) on the carrier board. The RTC PCF85063A is only directly supplied by V_LICELL when the PMIC or the TQMa8MPxL supply is switched off. During normal operation of the TQMa8MPxL, the PMIC supplies 3.3 V. Figure 6: Block diagram RTC supply (TQMa8MPxL with discrete RTC) ➤ The discrete RTC has I2C address 0x51 / 101 0001b # Note: RTC power supply The SNVS functions of the i.MX 8M Plus can only be used if the TQMa8MPxL is supplied with 5 V. Since the SNVS rail is not supplied when the TQMa8MPxL is not powered-up, we recommend using the optional RTC PCF85063A. # 3.2.5 Interfaces ## 3.2.5.1 Overview The following interfaces or signals are not available on the TQMa8MPxL LGA pads and are used on the TQMa8MPxL. Table 6: TQMa8MPxL-internal interfaces | Interface | Chapter | Remark | |--------------------------|----------|---| | USDHC3 | 3.2.2.2 | eMMC, 8 bit | | SDRAM | 3.2.2.1 | LPDDR4, 32 bit | | GPIO1_IO04 / SD2_VSELECT | 3.2.5.20 | - | | GPIO1_IO08 / IRQ# | - | 100 kΩ PU on TQMa8MPxL | | POR# | - | 100 kΩ PU on TQMa8MPxL, signal from CPU to PMIC | | PMIC_ON_REQ | - | Signal from CPU to PMIC | | PMIC_STBY_REQ | - | Signal from CPU to PMIC | | RTC_XTALO | - | 100 kΩ PU on TQMa8MPxL | ## 3.2.5.2 CAN FD The i.MX 8M Plus provides two CAN FD interfaces, CAN FD1 and CAN FD2. Both are multiplexed to SAI5 pins in the standard configuration and specified according to the CAN 2.0B protocol. The supply voltage is set via TQMa8MPxL LGA pad V_SAI1_SAI5. Table 7: CAN FD signals | Signal | i.MX 8M Plus | TQMa8MPxL | Power group | |------------|--------------|-----------|-------------| | CAN_FD1_TX | AD16 | B1 | | | CAN_FD1_RX | AF16 | C1 | V CAIL CAIE | | CAN_FD2_TX | AE14 | D1 | V_SAI1_SAI5 | | CAN_FD2_RX | AF14 | E1 | | ## 3.2.5.3 PWM The i.MX 8M Plus provides up to four PWM signals which can be multipexed via various pins. In the default configuration one PWM signal (PWM3) is provided at the TQMa8MPxL LGA pad D10. ## 3.2.5.4 GPT The i.MX 8M Plus provides up to three General Purpose Timers (GPT). These always use a part of the UART res. I2C pins of the CPU. Therefore only the GPT2 interface (GPT2_CLK) is provided by the TQMa8MPxL pad D8. ## 3.2.5.5 Ethernet The i.MX 8M Plus provides two Gigabit Ethernet interfaces, which support transfer rates of 10/100 and 1000 Mbps as well as full-and half-duplex. By default the ENET interface is configured as RGMII. The second Ethernet interface is provided at the SAI1 pins. The supply voltage must be set externally to 1.8 V or 3.3 V, with LGA pads V_ENET and V_SAI1_SAI5, see also chapter 3.2.8.6. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 100 Ω . On the carrier board they have to be connected according to RGMII specifications. The following table shows the signals used in RGMII mode. Table 8: ENET signals in RGMII mode | Signal | Ethernet | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | |---------------------|----------|-----------|--------------|-----------|-------------------| | ENET_QOS_RX_CTL | ENET1 | I | AE28 | AA4 | | | ENET_QOS_RXC | ENET1 | i | AE29 | AB7 | _ | | ENET_QOS_RD0 | ENET1 | i | AG29 | AB4 | _ | | ENET_QOS_RD1 | ENET1 | i | AG28 | AB5 | _ | | ENET_QOS_RD2 | ENET1 | ı | AF29 | AA6 | _ | | ENET_QOS_RD3 | ENET1 | ı | AF28 | Y7 | _ | | ENET_QOS_TX_CTL | ENET1 | 0 | AF24 | Y8 | _ | | ENET_QOS_TXC | ENET1 | 0 | AE24 | AB9 | V_ENET | | ENET_QOS_TD0 | ENET1 | 0 | AC25 | AA8 | _ | | ENET_QOS_TD1 | ENET1 | 0 | AE26 | AB8 | - | | ENET_QOS_TD2 | ENET1 | 0 | AF26 | Y9 | | | ENET_QOS_TD3 | ENET1 | 0 | AD24 | AA10 | | | ENET_QOS_MDC | ENET1 | 0 | AH28 | Y5 | _ | | ENET_QOS_MDIO | ENET1 | I/O | AH29 | Y6 | _ | | ENET_QOS_EVENT2_OUT | ENET1 | 0 | AJ14 | B8 | | | ENET_QOS_EVENT2_IN | ENET1 | I | AH16 | В9 | V_SAI2_SAI3_SPDIF | | ENET1_RST# | ENET1 | 0 | AC10 | L4 | | | ENET1_INT# | ENET1 | 0 | AF10 | H4 | | | ENETO_RST# | ENET0 | 0 | AJ9 | K4 | | | ENETO_INT# | ENET0 | I | AH8 | G4 | | | ENET_MDC | ENET0 | 0 | AH9 | H3 | | | ENET_MDIO | ENET0 | I/O | AJ8 | J3 | | | ENET_RD0 | ENET0 | I | AD10 | J2 | | | ENET_RD1 | ENET0 | I | AE10 | K2 | | | ENET_RD2 | ENET0 | I | AH10 | L3 | V CALL CALE | | ENET_RD3 | ENET0 | I | AH12 | M3 | V_SAI1_SAI5 | | ENET_RXC | ENET0 | I | AJ12 | K1 | | | ENET_TD0 | ENET0 | 0 | AJ11 | M2 | | | ENET_TD1 | ENET0 | 0 | AJ10 | N2 | | | ENET_TD2 | ENET0 | 0 | AH11 | P3 | | | ENET_TD3 | ENET0 | 0 | AD12 | R3 | | | ENET_TX_CTL | ENET0 | 0 | AH13 | R4 | | | ENET_TXC | ENET0 | О | AH14 | R2 | | | ENET_RX_CTL | ENET0 | I | AF12 | P4 | | ## 3.2.5.6 I²C Four I 2 C interfaces provided by the i.MX 8M Plus are routed to TQMa8MPxL LGA pads. All I 2 C devices on the TQMa8MPxL are controlled by the I2C1 bus. The following table shows the signals used by the I²C interfaces. Figure 7: Block diagram I²C Table 9: I²C signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | Remark | |----------|-----------|--------------|-----------|-------------|---------------------------------| | I2C1_SCL | 0 | AC8 | C14 | | 4.7 kΩ PU to 3.3 V on TQMa8MPxL | | I2C1_SDA | I/O | AH7 | D13 | | 4.7 kΩ PU to 3.3 V on TQMa8MPxL | | I2C2_SCL | 0 | AH6 | C13 | 3.3 V | No PU on TQMa8MPxL | | I2C2_SDA | I/O | AE8 | C12 | 3.5 V | No PU on TQMa8MPxL | | I2C4_SCL | 0 | AF8 | B14 | | No PU on TQMa8MPxL | | I2C4_SDA | I/O | AD8 | B13 | | No PU on TQMa8MPxL | | I2C6_SCL | 0 | Y29 | V10 | V CD1 | No PU on TQMa8MPxL | | I2C6_SDA | I/O | Y28 | W10 | V_SD1 | No PU on TQMa8MPxL | The following table shows the I²C devices controlled by the I2C1 bus on the TQMa8MPxL. Table 10: Address assignment I2C1 bus | Component | Function | 7-bit address |
|-----------|---------------------------------|------------------| | PCA9450 | PMIC | 0x25 / 010 0101b | | 24LC64T | EEPROM (optional) | 0x57 / 101 0111b | | PCF85063A | RTC (optional) | 0x51 / 101 0001b | | | EEPROM (Normal Mode) | 0x53 / 101 0011b | | SE97BTP | EEPROM (Protection Mode) | 0x33 / 011 0011b | | | Temperature sensor in EEPROM | 0x1B / 001 1011b | | SE050 | Trust Secure Element (optional) | 0x48 / 100 1000b | If more devices are connected to the I2C1 bus on the carrier board, the maximum capacitive bus load according to the I²C standard has to be taken note of. Additional pull-ups should be provided at the I²C bus on the carrier board, if required. ## 3.2.5.7 JTAG The processor provides a JTAG interface that can be used to debug the programs executed on the processor. A corresponding hardware tool is required for this. The interface can also be configured for Boundary Scan. Figure 8: Block diagram JTAG interface The following table shows the signals used by the JTAG interface. An external circuit on the mainboard has not to be provided. Table 11: JTAG signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Remark | Power group | |----------|-----------|--------------|-----------|-----------------------|-------------| | JTAG_TCK | I | G18 | M19 | - | | | JTAG_TDI | I | G16 | P18 | - | | | JTAG_TDO | 0 | F14 | L19 | - | 3.3 V | | JTAG_TMS | I | G14 | N18 | - | | | JTAG_MOD | I | G20 | - | 10 kΩ PD on TQMa8MPxL | | # 3.2.5.8 GPIO Except for the dedicated differential signals, e.g., MIPI DSI/CSI, and USB, all CPU signals routed to the TQMa8MPxL LGA pads can be configured as GPIO. The electrical characteristics of the GPIOs are to be taken from the i.MX 8M Plus Data Sheet (2). The following table shows the GPIO signals primarily configured as GPIO. Table 12: GPIO signals | Signal | i.MX 8M Plus | TQMa8MPxL | Power group | |------------|--------------|-----------|-----------------------| | GPIO1_IO00 | A7 | E16 | - | | GPIO1_IO01 | E8 | E15 | - | | GPIO1_IO03 | D6 | E14 | - | | GPIO1_IO06 | A3 | E12 | - | | GPIO1_IO07 | F6 | E11 | - | | GPIO1_IO09 | B8 | D11 | - | | GPIO3_IO14 | R26 | C16 | - | | GPIO2_IO06 | U26 | U8 | | | GPIO2_IO07 | AA29 | U9 | V_SD1 | | GPIO2_IO10 | W25 | V6 | V_3D1 | | GPIO2_IO11 | W26 | W7 | | | GPIO3_IO19 | AC14 | D2 | | | GPIO3_IO20 | AD14 | A2 | | | GPIO3_IO21 | AE16 | C2 | V_SAI1_SAI5 | | GPIO4_IO18 | AC12 | N4 | V_SAIT_SAIS | | GPIO4_IO19 | AJ13 | T2 | | | GPIO4_IO20 | AE12 | L1 | | | GPIO4_IO28 | AJ19 | A9 | | | GPIO4_IO27 | AJ15 | A6 | | | GPIO4_IO21 | AH17 | B6 | | | GPIO4_IO22 | AJ16 | A7 | | | GPIO4_IO24 | AJ17 | C7 | V_SAI2_SAI3_SPDIF | | GPIO4_IO25 | AH15 | C9 | V_3AI2_3AI3_3FDII
 | | GPIO4_IO29 | AJ18 | A10 | | | GPIO5_IO04 | AD18 | L5 | | | GPIO5_IO05 | AC18 | L6 | | | GPIO5_IO03 | AE18 | M6 | | | GPIO5_IO27 | AJ4 | E9 | - | | GPIO5_IO26 | AE6 | F9 | - | | GPIO5_IO07 | AC20 | G1 | - | | GPIO5_IO06 | AF20 | H1 | - | | GPIO5_IO09 | AE20 | F2 | - | | GPIO5_IO08 | AD20 | G2 | _ | ## 3.2.5.9 MIPI CSI The i.MX 8M Plus provides two MIPI-CSI camera interfaces with four data pairs each. When using one camera interface, the maximum image format is 4K at 45 fps or 12MP at 30 fps. When using both camera interfaces, up to 1080p at 80 fps is supported. The maximum bit rate is 1.5 Gbps. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 100 Ω . Figure 9: Block diagram MIPI CSI The following table shows the signals used by the MIPI CSI interface. Table 13: MIPI CSI signals | Tuble 13. Will 1 est 5 | 1911413 | | | |------------------------|--------------|-----------|-------------| | Signal | i.MX 8M Plus | TQMa8MPxL | Power group | | CSI1_D1_N | E20 | K20 | | | CSI1_D1_P | D20 | L20 | | | CSI1_D3_N | E26 | N20 | | | CSI1_D3_P | D26 | P20 | | | CSI1_CLK_N | E22 | L22 | | | CSI1_CLK_P | D22 | M22 | | | CSI1_D0_N | E18 | J21 | | | CSI1_D0_P | D18 | K21 | | | CSI1_D2_N | E24 | M21 | | | CSI1_D2_P | D24 | N21 | 1.8 V | | CSI2_D1_N | B24 | R21 | 1.0 V | | CSI2_D1_P | A24 | T21 | | | CSI2_D3_N | B21 | V21 | | | CSI2_D3_P | A21 | W21 | | | CSI2_CLK_N | B23 | T20 | | | CSI2_CLK_P | A23 | U20 | | | CSI2_D0_N | B25 | P22 | | | CSI2_D0_P | A25 | R22 | | | CSI2_D2_N | B22 | U22 | | | CSI2_D2_P | A22 | V22 | | ## 3.2.5.10 MIPI DSI The i.MX 8M Plus provides a DSI interface with four data pairs to output serial display data at up to 1.5 Gbps. The MIPI-DSI PHY supports resolutions up to 1920x1200 @ 60 fps. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 100 Ω . Figure 10: Block diagram MIPI DSI The following table shows the signals used by the MIPI DSI interface. Table 14: MIPI DSI signals | Signal | i.MX 8M Plus | TQMa8MPxL | Power group | |-----------|--------------|-----------|-------------| | DSI_CLK_N | B18 | F21 | | | DSI_CLK_P | A18 | G21 | | | DSI_D0_N | B16 | D20 | | | DSI_D0_P | A16 | E20 | | | DSI_D1_N | B17 | E22 | 1.8 V | | DSI_D1_P | A17 | F22 | 1.0 V | | DSI_D2_N | B19 | G20 | | | DSI_D2_P | A19 | H20 | | | DSI_D3_N | B20 | H22 | | | DSI_D3_P | A20 | J22 | | ## 3.2.5.11 HDMI The i.MX 8M Plus provides an HDMI interface according to the display specification "HDMI 2.0a" incl. eARC. The maximum resolutions are 3840x2160 @ 30 fps or 1920x1080 @ 120 fps. The interface operates with 1.8 V. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 100 Ω . Table 15: HDMI signals | Signal | i.MX 8M Plus | TQMa8MPxL | Power group | |--------------|--------------|-----------|-------------| | EARC_AUX | AH23 | V4 | | | EARC_N_HPD | AH22 | T1 | | | EARC_P_UTIL | AJ23 | U1 | | | HDMI_CEC | AD22 | W4 | | | HDMI_TXC_N | AJ24 | U3 | | | HDMI_TXC_P | AH24 | V3 | | | HDMI_DDC_SCL | AC22 | AB3 | | | HDMI_DDC_SDA | AF22 | AB2 | 1.8 V | | HDMI_HPD | AE22 | Y3 | | | HDMI_TX0_N | AJ25 | V2 | | | HDMI_TX0_P | AH25 | W2 | | | HDMI_TX1_N | AJ26 | W1 | | | HDMI_TX1_P | AH26 | Y1 | | | HDMI_TX2_N | AJ27 | Y2 | | | HDMI_TX2_P | AH27 | AA2 | | ## 3.2.5.12 LVDS In addition to MIPI-DSI and HDMI, the CPU provides an LVDS interface. The CPU only offers one PHY, but supports up to two channels with up to four data lanes each. The maximum resolution is 1920 x 1200 at 60 fps. The interface operates with 1.8 V. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 100Ω . Figure 11: Block diagram LVDS Table 16: LVDS signals | Signal | i.MX 8M Plus | TQMa8MPxL | Power group | |-------------|--------------|-----------|-------------| | LVDS0_D0_N | E28 | Y10 | | | LVDS0_D0_P | D29 | Y11 | | | LVDS0_D1_N | F28 | AA11 | | | LVDS0_D1_P | E29 | AA12 | | | LVDS0_D2_N | H28 | AB12 | | | LVDS0_D2_P | G29 | AB13 | | | LVDS0_D3_N | J28 | AA14 | | | LVDS0_D3_P | H29 | AA15 | | | LVDS0_CLK_N | G28 | Y13 | | | LVDS0_CLK_P | F29 | Y14 | 1.8 V | | LVDS1_D0_N | B26 | AB15 | 1.0 V | | LVDS1_D0_P | A26 | AB16 | | | LVDS1_D1_N | B27 | Y16 | | | LVDS1_D1_P | A27 | Y17 | | | LVDS1_D2_N | C28 | AA17 | | | LVDS1_D2_P | B29 | AA18 | | | LVDS1_D3_N | D28 | AA19 | | | LVDS1_D3_P | C29 | AA20 | | | LVDS1_CLK_N | B28 | AB18 | | | LVDS1_CLK_P | A28 | AB19 | | #### 3.2.5.13 PCle The i.MX 8M Plus provides a PCle Gen3 interface with one (x1) lane. The 100 MHz reference clock can be generated on the TQMa8MPxL and output to PCIE_REF_CLKN/P for the PCIe card. Alternatively, the reference clock can be provided from an external source to PCIE_REF_CLKN/P. In general, NXP recommends the use of an external source for accuracy reasons. The series capacitors required by the PCIe standard must be provided on the carrier board. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 85 Ω . The signals must be terminated on the carrier board according to the PCIe specification. Figure 12: Block diagram PCle Table 17: PCIe signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | |---------------|-----------|--------------|-----------|------------------------| | PCIE_REF_CLKN | I/O | E16 | Y22 | | | PCIE_REF_CLKP | 1/0 | D16 | AA22 | | | PCIE_RXN | I | B14 | W20 | 1.8 V | | PCIE_RXP | | A14 | Y20 | 1.0 V | | PCIE_TXN | 0 | B15 | AA21 | | | PCIE_TXP | | A15 | AB21 | | | PCIE_RESREF | I | F16 | - | 8.2 kΩ PD on TQMa8MPxL | ## Attention: Accelerated aging of PCI Express PHY Due to an erratum of the i.MX 8M Plus the PCI Express PHY is subject to accelerated aging in lower power states. In the i.MX 8M Plus errata (5), NXP describes a workaround that must be followed to avoid the aging impact to the PCI Express PHY. #### 3.2.5.14 SAI The i.MX 8M Plus provides several SAI interfaces with different bus widths. The 8-bit SAI1 is not available since it is multiplexed as Ethernet interface. Modules from Rev.02xx use only the SAI3 interface. The supply voltage has to be set to 1.8 V or 3.3 V on the carrier board with LGA pad V_SAI2_SAI3_SPDIF. Clock pins can be used as input or output. Figure 13: Block diagram SAI1 The following table lists all SAI signals provided by the TQMa8MPxL: Table 18: SAI signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | |-----------|-----------|--------------|-----------|-------------------| | SAI3_TXFS | 0 | AC16 | B11 | | | SAI4_RXD | I | AF18 | A12 | | | SAI3_TXc | 0 | AH19 | B12 | V_SAI2_SAI3_SPDIF | | SAI3_TXD | 0 | AH18 | A13 | | | SAI3_MCLK | 0 | AJ20 | C10 | | ## 3.2.5.15 SPDIF The i.MX 8M Plus has an SPDIF interface that is not used natively. Instead, the pins are multiplexed as GPIOs by default. This configuration can be changed if necessary, for example using the LGA pads shown in the following figure: Figure 14: Block diagram SPDIF #### 3.2.5.16 QSPI / NAND The NOR flash signals are routed to the TQMa8MPxL LGA pads. The NOR flash signals use a part of the NAND pins of the i.MX 8M Plus. All other NAND pins of the i.MX 8M Plus are used TQMa8MPxL-internally for the eMMC as uSDHC3 boot source. These LGA pads cannot be
used if the QSPI NOR flash is equipped! For more information regarding QSPI see chapter 3.2.2.3. Table 19: QSPI signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | |--------------|-----------|--------------|-----------|-------------| | QSPI_A_DATA3 | I/O | N24 | W12 | | | QSPI_A_DATA2 | I/O | L24 | W13 | | | QSPI_A_DATA1 | I/O | L25 | V13 | 1 0 1/ | | QSPI_A_DATA0 | I/O | R25 | V14 | 1.8 V | | QSPI_A_SS0# | 0 | L26 | V15 | | | QSPI_A_SCLK | 0 | N25 | W15 | | #### 3.2.5.17 ECSPI The full-duplex SPI interfaces of the i.MX 8M Plus support both master and slave modes with data rates of up to 52 Mbit/s. All SPI interfaces provide one chip select each and are directly routed to the TQMa8MPxL LGA pads. ECSPI2 is supplied with 1.8 V. ECSPI3, which is multiplexed with the UART signals, is supplied with 3.3 V. Figure 15: Block diagram ECSPI The following table shows the signals used by the ECSPI interface. Table 20: ECSPI signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | |-------------|-----------|--------------|-----------|-------------| | ECSPI2_MOSI | 0 | AJ21 | P5 | | | ECSPI2_MISO | I | AH20 | N5 | 1.0.1/ | | ECSPI2_SCLK | 0 | AH21 | M5 | - 1.8 V | | ECSPI2_SS0 | 0 | AJ22 | P6 | | | ECSPI3_MOSI | 0 | AJ3 | J6 | | | ECSPI3_MISO | I | AF6 | J5 | 221/ | | ECSPI3_SCLK | 0 | AD6 | K5 | - 3.3 V | | ECSPI3_SS0 | 0 | AH4 | H5 | | # 3.2.5.18 UART The i.MX 8M Plus provides four UART interfaces, which are all routed to TQMa8MPxL LGA pads. The voltage supply for UART1, UART2 and UART3 must be externally set to 1.8 V or 3.3 V via LGA pad Y19, V_SD1. UART4 is fixed supplied with 3.3 V. Figure 16: Block diagram UART interfaces The following table shows the signals used by the UART interfaces. Table 21: UART signals | Signal | Direction | i.MX 8M Plus TQMa8MPxL | | Power group | |-----------|-----------|------------------------|-----|-------------| | UART1_TXD | 0 | W28 | V11 | | | UART1_RXD | I | W29 | V12 | | | UART2_TXD | 0 | V29 | V9 | V CD1 | | UART2_RXD | I | V28 | W9 | - V_SD1 | | UART3_TXD | 0 | AA28 | V7 | | | UART3_RXD | I | U25 | V8 | | | UART4_TXD | 0 | AH5 | G6 | 2.2.1/ | | UART4_RXD | I | AJ5 | H6 | - 3.3 V | #### 3.2.5.19 USB The i.MX 8M Plus provides two USB 3.0 interfaces with integrated PHYs via USB1 and USB2. These support Super-Speed (5 Gbit/s), High-Speed (480 Mbit/s), Full-Speed (12 Mbit/s), as well as Low-Speed (1.5 Mbit/s) and offer host, device and OTG 2.0 functionalities. The OTG signals are provided via GPIO1 pins. All signals have 3.3 V level. Up to 5 V can be applied to the VBUS pins. The 30 k Ω resistors required by NXP are already provided on the module. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 90 Ω . Figure 17: Block diagram USB interfaces Table 22: USB signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | Note | |--------------|-----------|--------------|-----------|--------------|---------------------------| | USB1_VBUS | Р | A11 | F18 | 5 V tolerant | | | USB1_OTG_OC | I | A6 | H19 | | | | USB1_OTG_PWR | 0 | A5 | H18 | | | | USB1_OTG_ID | I | B7 | G18 | | | | USB1_ID | I | B11 | F19 | | NXP: Do not use | | USB1_DN | I/O | E10 | C22 | 3.3 V | | | USB1_DP | I/O | D10 | B22 | 3.5 V | | | USB1_RXN | I | B9 | B20 | | | | USB1_RXP | I | A9 | B19 | | | | USB1_TXN | 0 | B10 | A21 | | | | USB1_TXP | 0 | A10 | A20 | | | | USB2_VBUS | Р | D12 | E17 | 5 V tolerant | | | USB2_OTG_OC | I | B5 | D18 | | Multiplexed as GPIO1_IO15 | | USB2_OTG_PWR | 0 | A4 | D17 | | Multiplexed as GPIO1_IO14 | | USB2_OTG_ID | I | D8 | E19 | | Multiplexed as GPIO1_IO11 | | USB2_ID | I | E12 | D19 | | NXP: Do not use | | USB2_DN | I/O | E14 | C19 | 3.3 V | | | USB2_DP | I/O | D14 | C18 | 3.5 V | | | USB2_RXN | I | B12 | B17 | | | | USB2_RXP | I | A12 | B16 | | | | USB2_TXN | 0 | B13 | A18 | | | | USB2_TXP | 0 | A13 | A17 | | | #### 3.2.5.20 uSDHC The i.MX 8M Plus provides three uSDHC interfaces: uSDHC1, uSDHC2 and uSDHC3. uSDHC1 is configured as UART and I2C, see chapters 3.2.5.18 and 3.2.5.6. All three interfaces support the SD standard up to version 3.0, the MMC standard up to version 5.1, and 1.8 V and 3.3 V operation. uSDHC1 and uSDHC3 provide 8-bit wide interfaces, uSDHC2 provides a 4-bit wide interface. ## uSDHC1 The voltage level of uSDHC1 can be set to 1.8 V or 3.3 V by TQMa8MPxL LGA pad V_SD1, Y19. Since all essential i.MX 8M Plus signals are routed to TQMa8MPxL LGA pads, an eMMC can be connected on the carrier board. In this case the supply voltage must be set to 1.8 V. Booting from uSDHC1 is only possible after burning boot fuses and is therefore not supported by default. #### uSDHC2 An SD card can be connected to the uSDHC2 interface. All i.MX 8M Plus signals required are routed to TQMa8MPxL LGA pads. SD2_VSELECT (GPIO1_IO04) is used to control the SD card supply voltage and is not routed to a TQMa8MPxL LGA pad. The signal SD2_RESET_B can be ignored if the SD card is supplied by the TQMa8MPxL. The voltage V_SD2 is provided for external pull-ups. Figure 18: Block diagram SD card interface Table 23: USDHC2 signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Power group | |-----------------------|-----------|--------------|-----------|-------------| | SD2_DATA3 | I/O | AA25 | T5 | | | SD2_DATA2 | I/O | AA26 | U5 | | | SD2_DATA1 | I/O | AC29 | V5 | | | SD2_DATA0 | I/O | AC28 | W5 | | | SD2_CLK | 0 | AB29 | T4 | SD2_VSELECT | | SD2_CD# | I | AD29 | R6 | | | SD2_CMD | I/O | AB28 | U6 | | | SD2_WP | I | AC26 | T7 | | | SD2_RST# ³ | 0 | AD28 | U7 | | #### uSDHC3 The uSDHC3 interface uses a part of the NAND pins, on the TQMa8MPxL the eMMC is connected to it. ^{3: 4.7} kΩ PU on TQMa8MPxL. # 3.2.5.21 External clock sources The i.MX 8M Plus has the option to use two external oscillators as clock sources. All four i.MX 8M Plus signals provided for this purpose are routed to TQMa8MPxL LGA pads. The following table shows these clock signals. Table 24: CLK signals | Signal | i.MX 8M Plus | TQMa8MPxL | Power group | |----------|--------------|-----------|-------------| | CLK1_IN | K28 | W18 | | | CLK2_IN | L28 | W16 | 1.0.1/ | | CLK1_OUT | K29 | W17 | 1.8 V | | CLK2_OUT | L29 | V17 | | # 3.2.6 Unspecific signals The following table lists all signals that are not assigned to a specific group. ISO_7816 and ISO_14443 signals are only available with assembled Trust Secure Element, see chapter 3.2.3. Table 25: Unspecific signals | Signal | Direction | i.MX 8M Plus | TQMa8MPxL | Remark | |----------------|-----------------|--------------|-----------|-------------------------------| | PMIC_WDOG_OUT# | 0 | В6 | F8 | 3.3 V | | PMIC_WDOG_IN# | I | _ | F6 | 3.3 V, 100 kΩ PU on TQMa8MPxL | | M7_NMI | I | B4 | V19 | 3.3 V active high | | TEMP_EVENT# | O _{OD} | - | U19 | 0.9 V to 3.6 V | | RTC_EVENT# | O _{OD} | - | U18 | 0.7 V to 5.5 V | | ISO_7816_CLK | I | - | J19 | | | ISO_7816_RST | I | _ | L18 | | | ISO_7816_IO1 | I/O | _ | K18 | Use with populated | | ISO_7816_IO2 | I/O | _ | J18 | Trust Secure Element | | ISO_14443_LA | I/O | _ | D21 | | | ISO_14443_LB | I/O | _ | C21 | | # 3.2.7 Reset Reset inputs or outputs are available at the TQMa8MPxL LGA pads. The following block diagram shows the wiring of the reset signals. Figure 19: Block diagram Reset The following table describes the reset signals available at the TQMa8MPxL LGA pads: Table 26: Reset signals | Signal | Direction | TQMa8MPxL | Power group | Remark | |------------|-----------|------------|-------------|--| | RESET_IN# | I | E7 | 3.3 V | Activates RESET (POR_B) of the i.MX 8M Plus; low-active. External pull-up to 3.3 V required. Pull to GND to activate. | | RESET_OUT# | 0 | F7 | _ | Open drain output; low-active. Activates RESET of carrier board components. External pull-up required (max. 5.5 V). | | PMIC_RST# | I | E6 | 1.8 V | No pull-up on carrier board required; low-active. Programmable PMIC response (warm reset, cold reset). | | ONOFF | I | G 7 | 1.8 V | ON/OFF function of the i.MX 8M Plus (see CPU data sheet (2)). No pull-up on carrier board required; low-active. Pull to GND for 5 s to activate. | #### 3.2.8 Power # 3.2.8.1 Power supply The TQMa8MPxL requires a supply voltage of 5 V \pm 5 %. The characteristics and functions of a certain pin or signal is to be taken from the PMIC Data Sheet (4), and the i.MX 8M Plus Data Sheet (2). #### 3.2.8.2 Power consumption The given power consumption has to be seen as an approximate value. The TQMa8MPxL power consumption strongly depends on the application, the mode of operation and the operating system. For more information on power consumption and savings options, see NXP Application Note AN12410 (6). The following table shows TQMa8MPxL (with i.MX 8M Plus Quad) power supply (V_5V_IN) and power consumption parameters: Table 27: Power consumption | Mode of operation | Current @ 5 V | Power consumption @ 5 V | |--|---------------|-------------------------| | Theoretical calculated peak (worst case) | 3.625 A | 18.1 W | | U-Boot prompt | 0.36 A | 1.8 W | | Linux-Idle | 341.7 mA | 1.7 W | | Linux with 100 % CPU load | 716.1 mA | 3.6 W | | Reset | 0.140 mA | 0.7 mW | | Suspend to RAM mode | 25.60 mA | 128 mW | # 3.2.8.3 Voltage monitoring The TQMa8MPxL features a supervisor which monitors the input voltage (V_{IN}). If the input voltage drops below 4.38 V, a Reset is triggered and the TQMa8MPxL is held in reset until the input voltage is in the permitted range again. # Attention: Destruction or malfunction, supply voltage exceedance The voltage monitoring does not detect an exceedance of the permitted input voltage. An exceedance of
the permitted input voltage may cause malfunction, destruction or accelerated ageing of the TQMa8MPxL. #### 3.2.8.4 Other supply voltages # **USBx VBUS:** The voltage inputs USB1_VBUS and USB2_VBUS are used to detect the USB-VBUS voltage and are usually connected to the VBUS voltage switched by USB[2:1]_PWR. Protective circuitry on the TQMa8MPxL permits up to 5 V to be applied to these LGA pads. It is recommended to provide one 220 nF capacitor (10 V) each between USBx_VBUS and Ground on the carrier board. # **V_LICELL**: A coin cell can be connected to the TQMa8MPxL LGA pad D15, V_LICELL, to supply the optional discrete RTC. See chapter 3.2.4.2 for information on the LICELL or RTC options. # Note: RTC power supply If a discrete RTC is supplied by a coin cell, the CPU-internal RTC is not reset in case of a supply voltage failure. # 3.2.8.5 Supply outputs The TQMa8MPxL provides three voltages that can be used on the carrier board. Table 28: Voltages provided by TQMa8MPxL | Voltage | TQMa8MPxL | Usage | Max. load | |----------|-----------|--------------------------------|-----------| | V_1V8 | N1 | General usage on carrier board | 500 mA | | V_3V3 | P1 | General usage on carrier board | 500 mA | | V_3V3_SD | G5 | SD card supply | 400 mA | The voltage V_3V3 can be used as Power-Good signal for the supply of circuitry on the carrier board. # Attention: Destruction or malfunction, current exceedance A load of up to 500 mA at V_1V8 or V_3V3, as well as up to 400 mA at V_3V3_SD causes an increased power consumption of the TQMa8MPxL and thus a higher self-heating. These three voltages are outputs and must never be supplied from external sources! Furthermore the outputs are not short-circuit proof. Overloading the voltage outputs can damage the TQMa8MPxL. # 3.2.8.6 Configurable voltages The TQMa8MPxL provides four LGA pads that define the I/O voltages for specific rails of the CPU. These are listed in the following table and must be defined on the carrier board. If not defined, the corresponding I/O signals are not supplied with voltage. For this purpose the outgoing voltages V_1V8 or V_3V3 can be used. Table 29: Configurable voltages | Signal | TQMa8MPxL | Permitted voltages | Remark | |-------------------|-----------|--------------------|----------------------| | V ENET | AB10 | 1.8 V or 3.3 V | RGMII: 1.8 V | | V_ENET | ADIU | 1.6 V OI 3.5 V | RMII: 1.8 V or 3.3 V | | V_SAI1_SAI5 | B15 | 1.8 V or 3.3 V | - | | V_SAI2_SAI3_SPDIF | A15 | 1.8 V or 3.3 V | - | | V_SD1 | Y19 | 1.8 V or 3.3 V | - | # 3.2.8.7 Power-Up sequence TQMa8MPxL / carrier board Since the TQMa8MPxL operates with 5 V and the I/O voltages of the CPU signals are generated on the TQMa8MPxL, there are timing requirements for the carrier board design with respect to the voltages generated on the carrier board: After power up of the 5V supply for the TQMa8MPxL, the PMIC power-up sequence starts. External TQMa8MPxL inputs driven by the carrier board may only be switched on after the power-up of V_3V3. LGA pad P1 (V_3V3) can be used as feedback. Figure 20: Block diagram power supply carrier board # Attention: Destruction or malfunction, Power-Up sequence To avoid cross-supply and errors in the power-up sequence, no I/O pins may be driven by external components until the power-up sequence has been completed. The end of the power-up sequence is indicated by a high level of signal V_3V3, LGA pad P1. # 3.2.8.8 Standby and SNVS In standby mode, several voltage controllers on the TQMa8MPxL are switched off. The rails V_1V8_SNVS and V_0V8_SNVS remain active, which ensures the correct function of the RTC. #### 3.2.8.9 PMIC The characteristics and functions of all pins and signals have to be taken from the i.MX 8M Plus Reference Manual (1) and the PMIC Data Sheet (4). The PMIC is controlled by the I2C1 bus. ➤ The PMIC has I²C address 0x25 / 010 0101b The following PMIC and power management signals are available on the TQMa8MPxL LGA pads Table 30: PMIC signals | Signal | Direction | TQMa8MPxL | Power group | Remark | |---------------|-----------------|-----------|-------------|---| | PMIC_WDOG_IN# | l _{PU} | F6 | V_3V3 | Low-ctive PMIC Reset inputTriggers Cold ResetDeactivated by default | | PMIC_RST# | I | E6 | V_1V8_SNVS | Low-active PMIC Rest input with internal PU Triggers Cold Reset by default | | RESET_OUT# | Оор | F7 | 1.8 V | Low-active output Connected to PMIC POR# Can signal a TQMa8MPxL reset | | SD_VSEL | - | - | _ | • See chapter 3.2.5.20 | # Attention: Destruction or malfunction, PMIC programming Improper programming of the PMIC may result in the i.MX 8M Plus or periphery being operated outside its specification. This may lead to malfunctions, accelerated aging or destruction of the TQMa8MPxL. # 3.2.9 Impedances By default, all single-ended signals have a nominal impedance of 50 Ω ±10 %. However, some interfaces on the TQMa8MPxL are routed with different impedances, depending on the signal requirements. The following table is taken from the Hardware Developer's Guide (3) and shows the respective interfaces: Table 31: Impedances | Signal / Interface | Impedance on TQMa8MPxL | Recommendation for carrier board | |--|------------------------|-----------------------------------| | DDR DQS/CLK; PCIe CLK, TX/RX data pairs | 85 Ω, differential | $85~\Omega$ ±10 %, differential | | Differential USB signals | 90 Ω, differential | 90 Ω ±10 %, differential | | Differential MIPI (CSI, DSI), HDMI, EARC, LVDS signals | 100 Ω, differential | 100 Ω ±10 %, differential | | Differential RGMII signals | 100 Ω, differential | $100\Omega\pm10\%$, differential | # 4. SOFTWARE The TQMa8MPxL is delivered with a preinstalled boot loader U-Boot. The BSP provided by TQ-Systems GmbH is configured for the combination of TQMa8MPxL and MBa8MPxL. The boot loader U-Boot provides TQMa8MPxL-specific as well as board-specific settings, e.g.: - i.MX 8M Plus configuration - PMIC configuration - SDRAM configuration - eMMC configuration - Multiplexing - Clocks - Pin configuration - Driver strengths Further information can be found in the https://support.tq-group.com/TQMa8MPxl. If another bootloader is used, this data must be adapted. Contact <u>TQ-Support</u> for detailed information. # 5. MECHANICS #### 5.1 Dimensions Figure 21: TQMa8MPxL dimensions, side view Table 32: TQMa8MPxL heights | Dim. | Value | Tolerance | Remark | |------|----------|-----------|---| | Α | 0.125 mm | +0.075 mm | TQMa8MPxL LGA pads height | | | | –0.025 mm | | | В | 1.6 mm | ±0.16 mm | PCB without solder resist | | С | 1.43 mm | ±0.16 mm | Height CPU | | C1 | 1.17 mm | ±0.1 mm | Height of eMMC and NOR flash | | D | 0.57 mm | ±0.2 mm | Highest component, bottom side | | E | 3.18 mm | ±0.23 mm | Top edge CPU above carrier board, with soldered TQMa8MPxL | Figure 22: TQMa8MPxL dimensions, top view Figure 23: TQMa8MPxL dimensions, top through view #### 5.2 Component placement Figure 24: TQMa8MPxL, component placement top The labels on the TQMa8MPxL show the following information: Labels on TQMa8MPxL Table 33: | Label | Content | |-------------|--------------------------------| | AK1 (on D2) | TQMa8MPxL version and revision | | AK2 | Serial number | | AK3 | MAC address | Figure 25: TQMa8MPxL, LGA pad numbering scheme, top through view # 5.3 Adaptation to the environment The TQMa8MPxL has overall dimensions (length \times width) of 38 mm \times 38 mm (\pm 0,1 mm). The TQMa8MPxL has a maximum height above the carrier board of approximately 3.18 mm. The TQMa8MPxL has 366 LGA pads with a diameter of 1.0 mm and a grid of 1.7 mm. The TQMa8MPxL weighs approximately 10 g. # 5.4 Protection against external effects The TQMa8MPxL does not provide protection against dust, external impact and contact (IP00). Adequate protection has to be guaranteed by the surrounding system. # 5.5 Thermal management To cool the TQMa8MPxL, noteTable 28. The power dissipation originates primarily in the i.MX 8M Plus, the LPDDR4 SDRAM and the PMIC. The power dissipation also depends on the software used and can vary according to the application. See NXP documents (6) and (7) for further information. # Attention: Destruction or malfunction, TQMa8MPxL cooling The i.MX 8M Plus belongs to a performance category in which a cooling system is essential. It is the user's sole responsibility to define a suitable heat sink (weight and mounting position) depending on the specific mode of operation (e.g., dependence on clock frequency, stack height, airflow, and software). Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA package, thermal pad, heatsink) as well as the maximum pressure on the i.MX 8M Plus must be taken into consideration when connecting the heat sink, see (6). The i.MX 8M Plus is not necessarily the highest component. Inadequate cooling connections can lead to overheating of the TQMa8MPxL and thus malfunction, deterioration or destruction. # 5.6 Structural requirements The TQMa8MPxL has to be soldered on the carrier board. To ensure a high-quality connection of the LGA pads during reflow soldering of the TQMa8MPxL, the LGA pads must be free of grease and dirt. Please contact **TO-Support** for soldering instructions (11). #### 6. SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS #### 6.1 EMC The TQMa8MPxL was developed according to the requirements of electromagnetic compatibility (EMC). Depending on the target system, anti-interference measures may still be necessary to guarantee the adherence to the limits for the overall system. Following measures are recommended: - Robust ground planes (adequate ground planes) on the printed circuit board - A sufficient number of blocking capacitors in all
supply voltages - Fast or permanently clocked lines (e.g., clock signals) should be kept short; avoid interference of other signals by distance and/or shielding, also pay attention to frequencies and signal rise times - Filtering of all signals, which can be connected externally (also "slow signals" and DC can radiate RF indirectly) - Direct signal routing without stubs # 6.2 ESD In order to avoid interspersion on the signal path from the input to the protection circuit in the system, the protection against electrostatic discharge should be arranged directly at the inputs of a system. As these measures always have to be implemented on the carrier board, no special preventive measures were planned on the TQMa8MPxL. Following measures are recommended for a carrier board: • Generally applicable: Shielding of inputs (shielding connected well to ground / housing on both ends) Supply voltages: Suppressor diode(s)Slow signals: RC filtering, Zener diode(s) • Fast signals: Protection components, e.g., suppressor diode arrays ### 6.3 Shock and Vibration Table 34: Shock resistance | Parameter | Details | |------------------|--------------------------------| | Shock | According to DIN EN 60068-2-27 | | Shock form | Half sine | | Acceleration | 30 g | | Residence time | 10 ms | | Number of shocks | 3 shocks per direction | | Excitation axes | 6X, 6Y, 6Z | Table 35: Vibration resistance | Parameter | Details | |-------------------------|---| | Oscillation, sinusoidal | According to DIN EN 60068-2-6 | | Frequency ranges | 2 ~ 9 Hz, 9 ~ 200 Hz, 200 ~ 500 Hz | | Wobble rate | 1.0 octaves / min | | Excitation axes | X– Y – Z axis | | | 2 Hz to 9 Hz: 3.5 ^m /s ² | | Acceleration | 9 Hz to 200 Hz: 10 ^m / _{s²} | | | 200 Hz to 500 Hz: 15 ^m /s² | #### 6.4 Climate and operational conditions The TQMa8MPxL is available in three different variants (Consumer, Extended and Industrial) with different ambient temperature ranges. The operating temperature range for the TQMa8MPxL strongly depends on the installation situation (heat dissipation by heat conduction and convection); hence, no fixed value can be given for the TQMa8MPxL. In general, a reliable operation is given when following conditions are met: Table 36: Climate and operational conditions | Parameter | | Range | Remark | | |---|------------|-------------------|----------------|--| | Ambient temperature
TQMa8MPxL | Consumer | 0 °C to +85 °C | - | | | | Extended | −25 °C to +85 °C | - | | | | Industrial | −40 °C to +85 °C | - | | | T _J temperature i.MX 8M Plus | | −40 °C to +105 °C | - | | | T _J temperature PMIC | | −40 °C to +125 °C | - | | | Case temperature LPDDR4 | | −40 °C to +95 °C | _ | | | _ | Consumer | 0 °C to +85 °C | - | | | Case temperature other ICs | Extended | −25 °C to +85 °C | - | | | | Industrial | −40 °C to +85 °C | - | | | Storage temperature TQMa8MPxL | | −40 °C to +85 °C | - | | | Relative humidity (operating / storage) | | 10 % to 90 % | Not condensing | | Detailed information concerning the i.MX 8M Plus thermal characteristics is to be taken from NXP documents (6) and (7). #### Attention: Destruction or malfunction, TQMa8MPxL cooling The i.MX 8M Plus belongs to a performance category in which a cooling system is essential. It is the user's sole responsibility to define a suitable heat sink (weight and mounting position) depending on the specific mode of operation (e.g., dependence on clock frequency, stack height, airflow, and software). Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA package, thermal pad, heatsink) as well as the maximum pressure on the i.MX 8M Plus must be taken into consideration when connecting the heat sink, see (6). The i.MX 8M Plus is not necessarily the highest component. Inadequate cooling connections can lead to overheating of the TQMa8MPxL and thus malfunction, deterioration or destruction. # 6.5 Cyber Security A Threat Analysis and Risk Assessment (TARA) must always be performed by the customer for their individual end application, as the TQMa95xxSA is only a sub-component of an overall system. ### 6.6 Intended Use TQ DEVICES, PRODUCTS AND ASSOCIATED SOFTWARE ARE NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE OR RESALE FOR THE OPERATION IN NUCLEAR FACILITIES, AIRCRAFT OR OTHER TRANSPORTATION NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL SYSTEMS, LIFE SUPPORT MACHINES, WEAPONS SYSTEMS, OR ANY OTHER EQUIPMENT OR APPLICATION REQUIRING FAIL-SAFE PERFORMANCE OR IN WHICH THE FAILURE OF TQ PRODUCTS COULD LEAD TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE. (COLLECTIVELY, "HIGH RISK APPLICATIONS") You understand and agree that your use of TQ products or devices as a component in your applications are solely at your own risk. To minimize the risks associated with your products, devices and applications, you should take appropriate operational and design related protective measures. You are solely responsible for complying with all legal, regulatory, safety and security requirements relating to your products. You are responsible for ensuring that your systems (and any TQ hardware or software components incorporated into your systems or products) comply with all applicable requirements. Unless otherwise explicitly stated in our product related documentation, TQ devices are not designed with fault tolerance capabilities or features and therefore cannot be considered as being designed, manufactured or otherwise set up to be compliant for any implementation or resale as a device in high risk applications. All application and safety information in this document (including application descriptions, suggested safety precautions, recommended TQ products or any other materials) is for reference only. Only trained personnel in a suitable work area are permitted to handle and operate TQ products and devices. Please follow the general IT security guidelines applicable to the country or location in which you intend to use the equipment. # 6.7 Export Control and Sanctions Compliance The customer is responsible for ensuring that the product purchased from TQ is not subject to any national or international export/import restrictions. If any part of the purchased product or the product itself is subject to said restrictions, the customer must procure the required export/import licenses at its own expense. In the case of breaches of export or import limitations, the customer indemnifies TQ against all liability and accountability in the external relationship,irrespective of the legal grounds. If there is a transgression or violation, the customer will also be held accountable for any losses, damages or fines sustained by TQ. TQ is not liable for any delivery delays due to national or international export restrictions or for the inability to make a delivery as a result of those restrictions. Any compensation or damages will not be provided by TQ in such instances. The classification according to the European Foreign Trade Regulations (export list number of Reg. No. 2021/821 for dual-use-goods) as well as the classification according to the U.S. Export Administration Regulations in case of US products (ECCN according to the U.S. Commerce Control List) are stated on TQ's invoices or can be requested at any time. Also listed is the Commodity code (HS) in accordance with the current commodity classification for foreign trade statistics as well as the country of origin of the goods requested/ordered. ### 6.8 Warranty TQ-Systems GmbH warrants that the product, when used in accordance with the contract, fulfills the respective contractually agreed specifications and functionalities and corresponds to the recognized state of the art. The warranty is limited to material, manufacturing and processing defects. The manufacturer's liability is void in the following cases: - Original parts have been replaced by non-original parts. - Improper installation, commissioning or repairs. - Improper installation, commissioning or repair due to lack of special equipment. - Incorrect operation - Improper handling - Use of force - Normal wear and tear # 6.9 Operational safety and personal security Due to the occurring voltages (\leq 5 V DC), tests with respect to the operational and personal safety have not been carried out. # 6.10 Reliability and service life The MTBF calculated for the TQMa8MPxL is 1,192,246 hours with a constant error rate @+40 °C, Ground Benign. The TQMa8MPxL is designed to be insensitive to shock and vibration. The TQMa8MPxL must be assembled in accordance with the processing instructions provided by TQ-Systems GmbH. Detailed information concerning the i.MX 8M Plus service life under different operational conditions is to be taken from the NXP Application Note (7). # 7. ENVIRONMENT PROTECTION #### 7.1 RoHS The TQMa8MPxL is manufactured RoHS compliant. All components, assemblies and soldering processes are RoHS compliant. # 7.2 WEEE® The final distributor is responsible for compliance with the WEEE® regulation. Within the scope of the technical possibilities, the TOMa8MPxL was designed to be recyclable and easy to repair. #### 7.3 REACH® The EU-chemical regulation 1907/2006 (REACH® regulation) stands for registration, evaluation, certification and restriction of substances SVHC (Substances of very high concern, e.g., carcinogen, mutagen and/or persistent, bio accumulative and toxic). Within the scope of this juridical liability, TQ-Systems GmbH meets the information duty within the supply chain with regard to the SVHC substances, insofar as suppliers inform TQ-Systems GmbH accordingly. # 7.4 Statement on California Proposition 65 California Proposition 65, formerly known as the Safe Drinking Water and Toxic Enforcement Act of 1986, was enacted as a ballot initiative in November 1986. The proposition helps protect the state's drinking water sources from contamination by approximately 1,000 chemicals
known to cause cancer, birth defects, or other reproductive harm ("Proposition 65 Substances") and requires businesses to inform Californians about exposure to Proposition 65 Substances. The TQ device or product is not designed or manufactured or distributed as consumer product or for any contact with end-consumers. Consumer products are defined as products intended for a consumer's personal use, consumption, or enjoyment. Therefore, our products or devices are not subject to this regulation and no warning label is required on the assembly. Individual components of the assembly may contain substances that may require a warning under California Proposition 65. However, it should be noted that the Intended Use of our products will not result in the release of these substances or direct human contact with these substances. Therefore you must take care through your product design that consumers cannot touch the product at all and specify that issue in your own product related documentation. TQ reserves the right to update and modify this notice as it deems necessary or appropriate. #### 7.5 EuP The Energy using Products (EuP) is applicable for end user products with an annual quantity of >200,000. Thus the TQMa8MPxL always has to be considered in combination with the complete system. The compliance regarding EuP directive is basically possible for the TQMa8MPxL on account of available Standby or Sleep-Modes of the components on the TQMa8MPxL. # 7.6 Battery No batteries are assembled on the TQMa8MPxL. # 7.7 Packaging The TQMa8MPxL is delivered in reusable packaging. ### 7.8 Other entries By environmentally friendly processes, production equipment and products, we contribute to the protection of our environment. To be able to reuse the TQMa8MPxL, it is produced in such a way (a modular construction) that it can be easily repaired and disassembled. The energy consumption of the TQMa8MPxL is minimised by suitable measures. Because currently there is still no technical equivalent alternative for printed circuit boards with bromine-containing flame protection (FR-4 material), such printed circuit boards are still used. No use of PCB containing capacitors and transformers (polychlorinated biphenyls). These points are an essential part of the following laws: - The law to encourage the circular flow economy and assurance of the environmentally acceptable removal of waste as at 27.9.94 (Source of information: BGBI I 1994, 2705) - Regulation with respect to the utilization and proof of removal as at 1.9.96 (Source of information: BGBI I 1996, 1382, (1997, 2860)) - Regulation with respect to the avoidance and utilization of packaging waste as at 21.8.98 (Source of information: BGBI I 1998, 2379) - Regulation with respect to the European Waste Directory as at 1.12.01 (Source of information: BGBI I 2001, 3379) This information is to be seen as notes. Tests or certifications were not carried out in this respect. # 8. APPENDIX # 8.1 Acronyms and definitions The following acronyms and abbreviations are used in this document: Table 37: Acronyms | Acronym | Meaning | | | |-------------------|---|--|--| | ARM [®] | Advanced RISC Machine | | | | BGA | Ball Grid Array | | | | BIOS | Basic Input/Output System | | | | BSP | Board Support Package | | | | CAN | Controller Area Network | | | | CAN-FD | CAN with Flexible Data-Rate | | | | CPU | Central Processing Unit | | | | CSI | CMOS Sensor Interface | | | | DDR | Double Data Rate | | | | DIN | Deutsche Industrienorm (German industry standard) | | | | DNC | Do Not Connect | | | | DSI | Display Serial Interface | | | | EARC | Enhanced Audio Return Channel | | | | ECSPI | Enhanced Configurable SPI | | | | EEPROM | Electrically Erasable Programmable Read-Only Memory | | | | EMC | Electromagnetic Compatibility | | | | eMMC | embedded Multimedia Card (Flash) | | | | EN | Europäische Norm (European standard) | | | | ESD | Electrostatic Discharge | | | | EuP | Energy using Products | | | | FR-4 | Flame Retardant 4 | | | | Gbps | Gigabit per second | | | | GPIO | General Purpose Input/Output | | | | GPT | General-Purpose Timer | | | | HDMI | High-Definition Multimedia Interface | | | | I | Input | | | | I/O | Input/Output | | | | I2C | Inter-Integrated Circuit | | | | IP00 | Ingress Protection 00 | | | | IPU | Input with Pull-Up | | | | JEDEC | Joint Electronic Device Engineering Council | | | | JTAG [®] | Joint Test Action Group | | | | LGA | Land Grid Array | | | | LPDDR4 | Low Power DDR4 | | | | LVDS | Low-Voltage Differential Signaling | | | | MAC | Media Access Control | | | | MIPI | Mobile Industry Processor Interface | | | | ML/AI | Machine Learning / Artificial Intelligence | | | | MMC | Multimedia Card | | | | MTBF | Mean operating Time Between Failures | | | # 8.1 Acronyms and definitions (continued) Table 37: Acronyms (continued) | Acronym | Meaning | |-------------------|--| | NAND | Not-And | | NOR | Not-Or | | 0 | Output | | OD | Open Drain | | OOD | Output with Open Drain | | OTG | On-The-Go | | Р | Power | | PCB | Printed Circuit Board | | PCle | Peripheral Component Interconnect Express | | PCMCIA | People Can't Memorize Computer Industry Acronyms | | PD | Pull-Down (resistor) | | PHY | Physical (layer of the OSI model) | | PMIC | Power Management Integrated Circuit | | PU | Pull-Up (resistor) | | PWM | Pulse-Width Modulation | | PWP | Permanent Write Protected | | QSPI | Quad Serial Peripheral Interface | | RAM | Random Access Memory | | RC | Resistor-Capacitor | | REACH® | Registration, Evaluation, Authorisation (and restriction of) Chemicals | | RF | Radio Frequency | | RGMII | Reduced Gigabit Media Independent Interface | | RMII | Reduced Media Independent Interface | | RoHS | Restriction of (the use of certain) Hazardous Substances | | ROM | Read-Only Memory | | RTC | Real-Time Clock | | RWP | Reversible Write Protection | | SAI | Serial Audio Interface | | SCU | System Control Unit | | SD | Secure Digital | | SDRAM | Synchronous Dynamic Random Access Memory | | SNVS | Secure Non-Volatile Storage | | SPDIF | Sony-Philips Digital Interface Format | | SPI | Serial Peripheral Interface | | SVHC | Substances of Very High Concern | | TBD | To Be Determined | | TSE | Trust Secure Element | | UART | Universal Asynchronous Receiver/Transmitter | | UM | User's Manual | | USB | Universal Serial Bus | | uSDHC | Ultra-Secured Digital Host Controller | | WEEE [®] | Waste Electrical and Electronic Equipment | | WP | Write-Protection | # 8.2 References Table 38: Further applicable documents | No. | Name | Rev., Date | Company | |------|--|---------------------|-------------------| | (1) | i.MX 8M Plus Applications Processor Reference Manual | Rev. 1, Jun 2021 | <u>NXP</u> | | (2) | i.MX 8M Plus Applications Processors Data Sheet | Rev 1, Aug 2021 | <u>NXP</u> | | (3) | i.MX 8M Plus Hardware Developer's Guide | Rev 0, Mar 2021 | <u>NXP</u> | | (4) | PMIC PCA9450 Data Sheet | Rev 2.2, Sep 2021 | NXP | | (5) | i.MX 8M Plus Mask Set Errata for Mask P33A | Rev. 2, Oct 2021 | NXP | | (6) | i.MX 8M Plus Power Consumption Measurement, AN12410 | Rev. 0, 14 Apr 2019 | <u>NXP</u> | | (7) | i.MX 8M Plus Product Lifetime Usage, AN12468 | Rev.0, 23 Jun 2019 | <u>NXP</u> | | (8) | SE050 Trust Secure Element Data Sheet | Rev. 3.1, Dec 2020 | <u>NXP</u> | | (9) | MBa8MPxL User's Manual | – current – | <u>TQ-Systems</u> | | (10) | TQMa8MPxL Support-Wiki | – current – | TQ-Systems | | (11) | TQMa8MPxL Processing instructions | – current – | <u>TQ-Systems</u> |