

EM420 Technische Dokumentation Software TQ-Systems

Dok. Revision 1.0.0 App Version v2.14.2

TQ-Systems

Technische Prod	Technische Produktbeschreibung Software										
Erstellt: 2023-04-11 (generated) Projekt: Modbus Spezifikation											
Geprüft: 11.04.23 Julius Kluge Kunde: TQ-Systems GmbH											
	Dokumenten- Nr.: EM420.TPB.SW.TQ-Systems.v2.14.2										
Firma:	Firma: TQ-Systems GmbH Datei: EM420.TPB.SW.TQ-Systems.v2.14.2.pdf										

©TQ-Systems GmbH. Sämtliche in diesem Dokument enthaltenen Informationen sind streng vertraulich zu behandeln. Eine Weitergabe der Darstellungen und Kenntnisse an Dritte bedarf der schriftlichen Zustimmung der TQ-Systems GmbH.

Inhalt

1	Modbus Spezifikation	3
	1.1 Modbus-Einstellungen App	3
	1.1.1 Modbus Einstellungen RTU (RS-485)	3
	1.1.1.1 Terminierung	
	1.1.1.2 Idle-line failsafe	4
	1.1.1.3 Einstellungen	
	1.1.2 Modbus Einstellungen TCP (Ethernet)	
	1.1.2.1 TCP - Master	
	1.1.2.2 TCP - Slave	
	1.1.3 Erweiterte Modbus-Konfiguration	
	1.1.3.1 Sendeintervall	
	1.1.3.2 Registerkonfiguration	7
	1.1.4 Konfiguration sichern	
	1.1.5 Registerspezifikation	
	1.1.5.1 Auslesen von Registern	
	1.1.5.2 Registerbereiche	
	1.1.5.3 Sensor Statusmeldungen	ç
A	OBIS-Kennzahlen-System	10
R	Modbus - Übersicht Registerbereiche	11
ע	B.1 Dynamischer Modbus	
	B.2 Gruppenregister	27
	B.3 Sensorregister	20
	2.0 00110011091001	

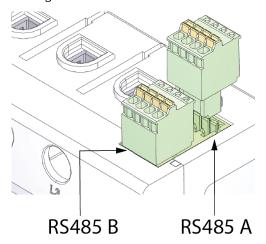
Wichtig: Bei einer neuen Versionsnummer/Index in der unteren Tabelle, muss zwingend das Register für die Modbus Spezifikations Version (siehe Version 7) aktualisiert werden!

Tab. 1: Änderungen

In- dex	Datum	Änderung
0001	05.08.2020	Dokument mit Änderungsindex erstellt
0002	03.09.2020	Registerbeschreibung 8193 (ProductID) aktualisert
0003	02.11.2020	Start address (hex) der Sensorregister in der Übersicht Registerbereiche korrigiert. Typ des Sensor/Gruppen-Label korrigiert. Beschreibung für Sensor/Gruppen-Klasse hinzugefügt.
0004	07.05.2020	Registergröße des Sunspec Registerblock 40036 bis 40043 korigiert
0005	30.07.2021	Fehlercode 0x02 bei Abfrage eines nicht spezifizierten Registers do- kumentiert
0006	29.11.2021	Registerbereich für dynamischen Modbus hinzugefügt
0007	29.11.2021	Registerbereich des TQ/RM PnP Registerblocks für Version der Modbus Spezifikation erweitert

1 Modbus Spezifikation

1.1 Modbus-Einstellungen App


Im folgenden wird die Funktionalität der Modbus-Einstellungen App in Form der möglichen Konfiguration, Betriebsmodi, sowie die Modbus Registerspezifikation beschrieben. Ein detaillierte Beschreibung des Modbus Protokolls und seiner Funktionsweise ist in der Modbus-Spezifikation zu finden (z.B. siehe www.modbus.org). Modbus TCP ist Teil der IEC 61158 Norm.

Die Modbus Datenschnittstelle kann in folgenden Betriebsmodi verwendet werden:

- · Modbus RTU Slave
- · Modbus RTU Master
- Modbus TCP Slave
- · Modbus TCP Master

1.1.1 Modbus Einstellungen RTU (RS-485)

Im Modus Modbus RTU Slave stellt der Energy Manager seine Modbus Register über RS-485 bereit. Beide RS-485 Schnittstellen, **RS485 A** und **RS485 B**, können hierfür individuell konfiguriert werden.

Details zum Anschluss an der RS-485 Buchse und der Verpolung der Schnittstelle finden Sie in der Installationsanleitung.

1.1.1.1 Terminierung

In Abhängigkeit der Leitungslänge und der Anzahl an Teilnehmern auf dem Bus, ist es empfehlenswert den Bus an beiden Enden mit einem 120 Ohm Widerstand zu terminieren. Durch die Terminierung werden Reflexionen in der Verbindung reduziert. Dies kann unter Umständen für die Zuverlässigkeit der Anwendung zwingend erforderlich sein.

1.1.1.2 Idle-line failsafe

Der Entwickler eines RS-485 Systems muss dafür sorgen, dass in jedem Fall ein definierter Pegel auf dem Bus anliegt. Das gilt auch für den Fall, wenn sich alle Treiber im passiven Zustand befinden. Für den Einsatzfall ohne Terminierung verfügt der Energy Manager über die entsprechende Failsafe Beschaltung (4,7 k Ω -> GND, 4,7 k Ω -> 5V).

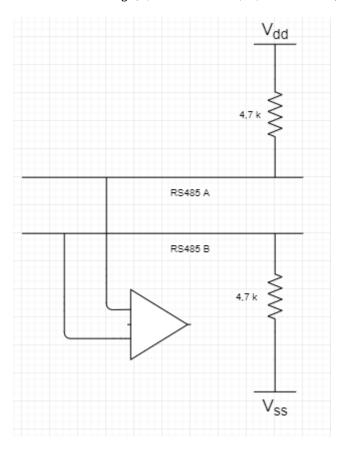


Abb. 1: Idle-line failsafe Beschaltung beim Energy Manager ohne Terminierung

Für den Betrieb des Energy Managers an einem Bus mit Terminierung muss die Idleline-failsafe durch die Gegenstelle oder extern sichergestellt werden.

1.1.1.3 Einstellungen

Zunächst muss der Steckplatz des Busses und die dazugehörige Schnittstelle **Schnittstelle RS485 A** oder **Schnittstelle RS485 B** geklärt sein.

Über **Schnittstelle aktivieren** werden die gesetzten Einstellungen für die jeweilige RS-485 Schnittstelle aktiviert. Um die Kommunikation über die Schnittstelle zu starten, müssen die Einstellungen noch über **Speichern** gesichert werden.

Konfiguration der Schnittstelle

Die konkrete Konfiguration hängt von den Anforderungen der Gegenstelle ab. Im Zweifel sollte die Konfiguration der Gegenstelle konsultiert werden. Der Modbus-Standard erfordert zeitliche Mindestabstände zwischen Anfrage- und Antwort-Signal, die von der spezifische Konfiguration, insbesondere der Baudrate abhängen. Bitte beachten Sie diese Mindestabstände bei der Kommunikation sowohl in Slave- als auch Master-Modus.

• Voreinstellung kann eine Auswahl an voreingestellten Parametern enthalten.

Erweitert:

- Modus konfiguriert die Schnittstelle um entweder als Modbus Master oder Slave zu funktionieren
- **Slave Adresse** setzt im Modus **Slave** die Adresse des Energy Managers im Modbus. Im Modus **Master** stellt dieses Feld die Adresse des Slaves ein, an den gesendet werden soll. Dieser Wert kann einen Wert zwischen 1 und 255 betragen.
- Baudrate setzt die Baudrate der Verbindung.
- Datenbits setzt die Anzahl an Datenbits.
- Parität setzt die Parität der Verbindung.
- **Stoppbits** setzt die Anzahl an Stoppbits.

1.1.2 Modbus Einstellungen TCP (Ethernet)

1.1.2.1 TCP - Master

Im Modus Modbus TCP Master schreibt der Energy Manager in die Register eines oder mehrerer konfigurierter Slaves. Geschrieben werden können die internen Momentanwertregister und die internen Energiewertregister (siehe Registerspezifikation). Die TQ/RM PnP Register und die SunSpec-Register werden über Modbus Master nicht übertragen.

- **Slave Adresse** setzt die Adresse eines TCP Slaves. Diese kann in Form einer **IP-Adresse** oder einer **URL** angegeben werden.
- Port setzt den TCP Port auf dem der Slave die Modbus Kommunikation erwartet.

Es können bis zu 10 TCP Slaves konfiguriert werden.

1.1.2.2 TCP - Slave

Im Modus Modbus TCP Slave, stellt der Energy Manager seine Modbus Register über TCP/IP bereit. Für den Zugang zu dieser Schnittstelle ist eine Netzwerkanbindung über Ethernet erforderlich. Der Modbus Slave ist standardmäßig unter Port Nummer 502 erreichbar.

Aktiviere TCP Slave aktiviert bzw. deaktiviert die Modbus Slave Funktionalität.

• Aktiviere Verschlüsselung (TLS) aktiviert bzw. deaktiviert die Verschlüsselung mittels TLS für Modbus Slave Verbindungen. Bei aktivierter Verschlüsselung ist der Modbus Slave nur unter Port 802 erreichbar. Unverschlüsselte Verbindungen zu Port 502 sind dann nicht mehr möglich.

Umgang mit selbstsignierten TLS Zertifikaten

Hinweis Unbekannte TLS-Zertifikate sollten immer sorgfältig überprüft werden, um unbefugten Zugriff Dritter auf Messdaten des Geräts zu verhindern!

Tipp Zu Gegenstellen, welche bekannte oder bereits akzeptierte Zertifikate verwenden, wird automatisch eine sichere TLS-Verbindung aufgebaut.

Das Gerät besitzt eine Reihe von vertrauten Zertifikaten und Zertifizierungsstellen (CA). Wird ein Verbindungsaufbau zu einer Gegenstelle initiiert, welcher ein selbstsigniertes Zertifikat (sogenanntes **Self-Signed-Certificate**) bereit hält, wird dieses vom Gerät erkannt und muss vom Nutzer selbst aktiv akzeptiert werden.

Einen Überblick über hinzugefügte und unbekannte Zertifikate bietet die aufklappbare Tabelle **Zertifikate**, welche sich direkt unterhalb der Modbus TCP-Konfiguration befindet. Zertifikate werden dort wie folgt beschrieben:

Akzeptiert

- Der Status zeigt einen grünen Haken an. Dahinter befindet sich ein Button LÖ-SCHEN. Diesem Zertifikat wird vom Gerät vertraut.
- Gegenstellen, welche dieses Zertifikat verwenden, wird vertraut und es kann eine sichere TLS-Verbindung zu diesen aufgebaut werden.
- Durch einen Klick auf **LÖSCHEN** wird das Zertifikat aus der Liste der vertrauten Zertifikate gelöscht. Diesem Zertifikat wird nun nicht mehr vertraut und offene Verbindungen, welche dieses Zertifikat verwenden, werden sofort beendet.

Nicht Akzeptiert

- Der Status zeigt ein rotes Kreuz an. Dahinter befindet sich ein Button AKZEPTIE-REN. Diesem Zertifikat wird nicht vertraut.
- Um zu Gegenstellen, welche dieses Zertifikat verwenden, eine sichere TLS-Verbindung aufzubauen, muss diesem Zertifikat zuerst aktiv vertraut werden.
- Durch einen Klick auf **AKZEPTIEREN** wird das Zertifikat den vertrauten Zertifikaten hinzugefügt und gilt nun als **Akzeptiert**. Eine sichere TLS-Verbindung von Gegenstellen, welche dieses Zertifikat verwenden, kann nun aufgebaut werden.

1.1.3 Erweiterte Modbus-Konfiguration

Hier können weitere Einstellungen für Modbus Master getätigt werden. Diese Einstellungen sind für alle konfigurierten Modbus Master gültig.

1.1.3.1 Sendeintervall

Hier kann ein Sendeintervall konfiguriert werden. Im Normalfall sendet der Energy Manager seine Messdaten über Modbus Master sobald diese verfügbar sind. Falls das Sendeintervall aktiviert ist, werden die Daten stattdessen in einem regelmäßigen Intervall gesendet, unabhängig davon, wann sie verfügbar werden. Je nach Konfiguration werden entweder stets nur

die aktuellen Messwerte zum Sendezeitpunkt übermittelt, oder Mittelwerte über das Intervall gebildet.

Festes Sendeintervall aktivieren schaltet das Sendeintervall an. Daraufhin muss ein Sendeintervall entweder aus der Auswahlliste (von 1 Sekunde bis 1 Tag) gewählt oder benutzerdefiniert in Sekunden angegeben werden, in dem der Energy Manager seine Daten senden soll.

Mittelung über Sendeintervall schaltet die Mittelwertbildung über das Sendeintervall ein. Wenn aktiviert, werden Mittelwerte über alle Messzyklen übertragen, welche innerhalb des Sendeintervalls liegen. Falls dies deaktiviert ist, wird der jeweils aktuelle Messwert zum Ende des Sendeintervalls übertragen.

1.1.3.2 Registerkonfiguration

Hier können Gruppen von Registern ausgewählt werden, die im Master-Modus geschrieben werden sollen. Damit kann die Systemlast verringert werden, wenn nicht alle Register benötigt werden. Es können ausgewählt werden:

- Momentanwerte Summe: Die Momentanwerte des Gesamtsystems (Register 0-27)
- **Momentanwerte Phasen:** Die Momentanwerte nach Phasen aufgeschlüsselt (Register 40–147)
- Energiewerte Summe: Die Energiewerte des Gesamtsystems (Register 512-551)
- **Energiewerte Phasen:** Die Energiewerte nach Phasen aufgeschlüsselt (Register 592–791)
- **Messwerte der Sensoren:** Die Messwerte der angeschlossenen Sensoren (Register 61440-65279). Nur vorhanden, falls Sensoren verfügbar sind.
- **Messwerte der Gruppen:** Die Messwerte der konfigurierten Gruppen (Register 59392-61311). Nur vorhanden, falls Gruppen verfügbar sind.

Über den Pfeil auf der rechten Seite kann jeweils eine detaillierte Liste der Register aufgeklappt werden, die in den jeweiligen Gruppen enthalten sind.

Achtung: Für Modbus RTU Master kann es sein, dass je nach konfigurierter Baudrate, Registergruppen und Sendeintervall nicht alle Register innerhalb des Sendeintervalls übertragen werden können. Bitte stellen Sie sicher, dass die Konfigurationen aufeinander abgestimmt sind.

1.1.4 Konfiguration sichern

Hier kann die Modbus Konfiguration exportiert oder importiert werden. Dabei wird stets die gesamte Konfiguration gesichert beziehungsweise gesetzt. Eine Konfigurationsdatei kann für mehrere Geräte verwendet werden.

- Konfiguration exportieren ermöglicht über Herunterladen den Download der aktuell gespeicherten Konfiguration als Datei.
- Konfiguration importieren ermöglicht über Wiederherstellen die Übernahme der Konfiguration aus einer zuvor exportierten Datei.

1.1.5 Registerspezifikation

Die Datenregister können in verschiedene Bereiche unterteilt werden. Die Datenpunkte des Energy Manager sind nach dem OBIS Standard kodiert. Zusätzlich sind im Registerbereich 40000-40177 die Datenpunkte nach Standards der SunSpec Alliance kodiert:

- SunSpec Alliance Interoperability Specification Common Models
- SunSpec Alliance Interoperability Specification Meter Models

1.1.5.1 Auslesen von Registern

Die meisten Datenpunkte des Energy Managers werden auf mehrere 16-Bit Register verteilt. Das bedeutet, dass ein RTU Master / TCP Client sämtliche Register eines Datenpunktes in ein und derselben Anfrage anfordern sollte. In anderen Worten: die Modbus-Einstellungen App kann Atomarität nur auf der Ebene einer einzelnen Anfrage garantieren.

Interpretation von Datenpunkten mit mehreren Registern: Im Falle von einem Multi-Register Datenpunkt beinhalten die Register mit der niedrigeren Adresse die "Mostsignificant" Bits. Die "Least-siginificant" Bits sind in den Registern mit der höheren Adresse enthalten.

Beispiel Prinzip: Ein fiktiver Datenpunkt "TotalOperatingHours" (uint32) befindet sich bei offset 0x1000. Der Datenpunkt soll 2293828 Betriebsstunden beinhalten.

- die Adresse 0x1000 beinhaltet 0x23
- die Adresse 0x1001 beinhaltet 0x44

Während der Anfrage werden beide Register in der Netzwerk-Byte-Reihenfolge (Big Endian) wie von Modbus Spezifikation vorgegeben übertragen. Ein "Read Holding Registers" für beide Register liefert 0x00 0x23 0x00 0x44.

Beispiel Umrechnung: Um die bezogene Wirkleistung (+) auszulesen, kann man die (Integer) Werte der "holding registers" 0 und 1 verwenden:

```
Active power+ [W] = (\{Register 0\} \cdot 2^16 + \{Register 1\}) \cdot 0.1 [W]
```

Um die bezogene Wirkenergie (+), das heißt die bezogene Wirkenergie über alle Phasen auszulesen, kann man die (Integer) Register 512 bis 515 verwenden:

```
Active energy+ [Wh] = ({Register 512} \cdot 2^48 + {Register 513} \cdot 2^32 + {Register 514} \cdot 2^16 + {Register 515}) \cdot 0.1 [Wh]
```

Auslesen nicht belegter Register Wenn ein Client versucht nicht spezifizierte Register auszulesen, dann wird ein Fehlercode "0x02" (ILLEGAL_DATA_ADDRESS) gesendet. Nicht spezifizierte Register sind die Register, die in der Registerspezifikation im Anhang nicht aufgeführt werden.

1.1.5.2 Registerbereiche

Eine Übersicht aller verfügbaren Register ist im Anhang Modbus - Übersicht Registerbereiche zu finden.

1.1.5.3 Sensor Statusmeldungen

An den Energy Manager angeschlossene Geräte (z.B. SU100) können in ihrer Registerspezifikation ein Statusregister enthalten. Dieses folgt allgemein gültigen Status-Werten: STATUS_UNKNOWN, STATUS_OK, STATUS_WARNING, STATUS_ERROR. Im Folgenden sind die States mit Registerwerten aufgelistet und ihre Auswirkungen auf die Registerbereiche beschrieben.

Status	Beschreibung	Auswirkungen
0 = STATUS_UNKNOWN	default Wert, wird im Betrieb nicht weiter verwendet	keine
1 = STATUS_OK	Das Gerät funktioniert ord- nungsgemäß, die Kommuni- kation zwischen Gerät und Energy Manager ist erfolg- reich.	Daten liegen vollständig im Registerbereich vor
2 = STATUS_WARNING	Dieser Status liegt in folgenden Fällen vor: • Ein Gerät ist noch nicht vollständig konfiguriert • Auf der Schnittstelle läuft aktuell noch ein Scan • Die Systemzeit des Energy Managers ist ungültig	Sensor ist erreichbar, aber Konfiguration fehlt -> Registerbereich wird nicht aktualisiert
3 = STATUS_ERROR	Dieser Status liegt in folgenden Fällen vor: • Die Kommunikation zwischen dem Gerät und dem Energy Manager ist gestört • Das Gerät meldet einen Fehler	OBIS-Daten im Registerbereich werden mit ,0' beschrieben

A OBIS-Kennzahlen-System

Zur Datenübertragung und Unterscheidung der verschiedenen Messdaten einer Datenquelle werden sog. OBIS Codes verwendet. **OBIS** steht für **Ob**ject **I**dentification **S**ystem und wird für die elektronische Datenkommunikation im Energiemarkt eingesetzt.

OBIS-Kennzahlen bestehen aus sechs Wertegruppen (A-F) aus deren Kombination sich die Spezifikation eines Wertes ableitet. Sie werden in der Form **A-B:C.D.E*F** dargestellt.

Die konkret im Energy Manager verwendeten OBIS-Kennzahlen sind in Abhängigkeit der Datenquelle im Dokumentenanhang beschrieben. Als Basis dient das OBIS-Kennzahlen-System in der Version 2.0 (Stand: 02.02.2009), welches sich nach DIN EN 62056-61:2007-06 richtet und unter edi-energy.de zu finden ist.

Nachfolgend werden die einzelnen Gruppen im Kontext des Energy Managers erläutert.

Gruppe A (Medium)

A = 1 (Elektrizität)

Gruppe B (Kanal)

Dient zur Unterscheidung der drei möglichen Datenquellen:

- für "Smart Meter"-Werte: B = 0
- für Sensoren-Werte: B = Sensor-ID + 1
- für Gruppen-Werte: B = Gruppen-ID + 100

Gruppe C (Messgröße)

Schlüsselwert der resultierenden Messgröße nach OBIS-Kennzahlen-System

Gruppe D (Messart)

Schlüsselwert der angewandten Messart nach OBIS-Kennzahlen-System

Gruppe E (Tarifstufe)

Schlüsselwert des Tarifs, meistens E = 0 (Total)

Gruppe F (Vorwertzählerstand)

F = 255

Anmerkung: Die Werte der Gruppen A und F sind fix, die der restlichen Gruppen variabel.

B Modbus - Übersicht Registerbereiche

Tab. 1: Übersicht Registerbereiche

Start address (dec)	End ad- dress (dec)	Start address (hex)	End ad- dress (hex)	Size	Description
0	147	0x0000	0x0093	148	Internal instantaneous registers
512	791	0x0200	0x0317	280	Internal Energy registers (counters)
8192	8249	0x2000	0x2039	57	TQ/RM PnP registers
40000	40177	0x9C40	0x9CF1	178	SunSpec registers
49152	59391	0xC000	0xE7FF	10240	Dynamic modbus registers
59392	61311	0xE800	0xEF7F	1920	Group registers
61440	65279	0xF000	0xFED8	3840	Sensor registers

Tab. 2: Interne Momentanwert-Register

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
0	1	0x0000	0x0001	2	RO	0x03	uint32	0.1 W	1-0:1.4.0*255	Active power+
2	3	0x0002	0x0003	2	RO	0x03	uint32	0.1 W	1-0:2.4.0*255	Active power-
4	5	0x0004	0x0005	2	RO	0x03	uint32	0.1 var	1-0:3.4.0*255	Reactive power+
6	7	0x0006	0x0007	2	RO	0x03	uint32	0.1 var	1-0:4.4.0*255	Reactive power-
8	9	0x0008	0x0009	2	RO	0x03				(reserved)
10	11	0x000A	0x000B	2	RO	0x03				(reserved)
12	13	0x000C	0x000D	2	RO	0x03				(reserved)
14	15	0x000E	0x000F	2	RO	0x03				(reserved)
16	17	0x0010	0x0011	2	RO	0x03	uint32	0.1 VA	1-0:9.4.0*255	Apparent power+
18	19	0x0012	0x0013	2	RO	0x03	uint32	0.1 VA	1-0:10.4.0*255	Apparent power-
20	21	0x0014	0x0015	2	RO	0x03				(reserved)
22	23	0x0016	0x0017	2	RO	0x03				(reserved)
24	25	0x0018	0x0019	2	RO	0x03	int32	0.001 (unit- less)	1-0:13.4.0*255	Power factor
26	27	0x001A	0x001B	2	RO	0x03	uint32	0.001 Hz	1-0:14.4.0*255	Supply frequency
28	29	0x001C	0x001D	2	RO	0x03				(reserved)
30	31	0x001E	0x001F	2	RO	0x03				(reserved)
32	33	0x0020	0x0021	2	RO	0x03				(reserved)
34	35	0x0022	0x0023	2	RO	0x03				(reserved)
36	37	0x0024	0x0025	2	RO	0x03				(reserved)
38	39	0x0026	0x0027	2	RO	0x03				(reserved)
40	41	0x0028	0x0029	2	RO	0x03	uint32	0.1 W	1-0:21.4.0*255	Active power+ (L1)
42	43	0x002A	0x002B	2	RO	0x03	uint32	0.1 W	1-0:22.4.0*255	Active power- (L1)
44	45	0x002C	0x002D	2	RO	0x03	uint32	0.1 var	1-0:23.4.0*255	Reactive power+ (L1)
46	47	0x002E	0x002F	2	RO	0x03	uint32	0.1 var	1-0:24.4.0*255	Reactive power- (L1)
48	49	0x0030	0x0031	2	RO	0x03				(reserved)
50	51	0x0032	0x0033	2	RO	0x03				(reserved)
52	53	0x0034	0x0035	2	RO	0x03				(reserved)
54	55	0x0036	0x0037	2	RO	0x03				(reserved)

Tab. 2 - Fortsetzung der vorherigen Seite

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
56	57	0x0038	0x0039	2	RO	0x03	uint32	0.1 VA	1-0:29.4.0*255	Apparent power+ (L1)
58	59	0x003A	0x003B	2	RO	0x03	uint32	0.1 VA	1-0:30.4.0*255	Apparent power- (L1)
60	61	0x003C	0x003D	2	RO	0x03	uint32	0.001 A	1-0:31.4.0*255	Current (L1)
62	63	0x003E	0x003F	2	RO	0x03	uint32	0.001 V	1-0:32.4.0*255	Voltage (L1)
64	65	0x0040	0x0041	2	RO	0x03	int32	0.001 (unit- less)	1-0:33.4.0*255	Power factor (L1)
66	67	0x0042	0x0043	2	RO	0x03				(reserved)
68	69	0x0044	0x0045	2	RO	0x03				(reserved)
70	71	0x0046	0x0047	2	RO	0x03				(reserved)
72	73	0x0048	0x0049	2	RO	0x03				(reserved)
74	75	0x004A	0x004B	2	RO	0x03				(reserved)
76	77	0x004C	0x004D	2	RO	0x03				(reserved)
78	79	0x004E	0x004F	2	RO	0x03				(reserved)
80	81	0x0050	0x0051	2	RO	0x03	uint32	0.1 W	1-0:41.4.0*255	Active power+ (L2)
82	83	0x0052	0x0053	2	RO	0x03	uint32	0.1 W	1-0:42.4.0*255	Active power- (L2)
84	85	0x0054	0x0055	2	RO	0x03	uint32	0.1 var	1-0:43.4.0*255	Reactive power+ (L2)
86	87	0x0056	0x0057	2	RO	0x03	uint32	0.1 var	1-0:44.4.0*255	Reactive power- (L2)
88	89	0x0058	0x0059	2	RO	0x03				(reserved)
90	91	0x005A	0x005B	2	RO	0x03				(reserved)
92	93	0x005C	0x005D	2	RO	0x03				(reserved)
94	95	0x005E	0x005F	2	RO	0x03				(reserved)
96	97	0x0060	0x0061	2	RO	0x03	uint32	0.1 VA	1-0:49.4.0*255	Apparent power+ (L2)
98	99	0x0062	0x0063	2	RO	0x03	uint32	0.1 VA	1-0:50.4.0*255	Apparent power- (L2)
100	101	0x0064	0x0065	2	RO	0x03	uint32	0.001 A	1-0:51.4.0*255	Current (L2)
102	103	0x0066	0x0067	2	RO	0x03	uint32	0.001 V	1-0:52.4.0*255	Voltage (L2)
104	105	0x0068	0x0069	2	RO	0x03	int32	0.001 (unit- less)	1-0:53.4.0*255	Power factor (L2)
106	107	0x006A	0x006B	2	RO	0x03				(reserved)

Tab. 2 - Fortsetzung der vorherigen Seite

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Type	Units	OBIS-Code	Description
108	109	0x006C	0x006D	2	RO	0x03				(reserved)
110	111	0x006E	0x006F	2	RO	0x03				(reserved)
112	113	0x0070	0x0071	2	RO	0x03				(reserved)
114	115	0x0072	0x0073	2	RO	0x03				(reserved)
116	117	0x0074	0x0075	2	RO	0x03				(reserved)
118	119	0x0076	0x0077	2	RO	0x03				(reserved)
120	121	0x0078	0x0079	2	RO	0x03	uint32	0.1 W	1-0:61.4.0*255	Active power+ (L3)
122	123	0x007A	0x007B	2	RO	0x03	uint32	0.1 W	1-0:62.4.0*255	Active power- (L3)
124	125	0x007C	0x007D	2	RO	0x03	uint32	0.1 var	1-0:63.4.0*255	Reactive power+ (L3)
126	127	0x007E	0x007F	2	RO	0x03	uint32	0.1 var	1-0:64.4.0*255	Reactive power- (L3)
128	129	0x0080	0x0081	2	RO	0x03				(reserved)
130	131	0x0082	0x0083	2	RO	0x03				(reserved)
132	133	0x0084	0x0085	2	RO	0x03				(reserved)
134	135	0x0086	0x0087	2	RO	0x03				(reserved)
136	137	0x0088	0x0089	2	RO	0x03	uint32	0.1 VA	1-0:69.4.0*255	Apparent power+ (L3)
138	139	0x008A	0x008B	2	RO	0x03	uint32	0.1 VA	1-0:70.4.0*255	Apparent power- (L3)
140	141	0x008C	0x008D	2	RO	0x03	uint32	0.001 A	1-0:71.4.0*255	Current (L3)
142	143	0x008E	0x008F	2	RO	0x03	uint32	0.001 V	1-0:72.4.0*255	Voltage (L3)
144	145	0x0090	0x0091	2	RO	0x03	int32	0.001 (unit- less)	1-0:73.4.0*255	Power factor (L3)
146	147	0x0092	0x0093	2	RO	0x03	uint32	0.1 W		Minimum active power+ * 3

Tab. 3: Interne Energie-Register

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
512	515	0x0200	0x0203	4	RO	0x03	uint64	0.1 Wh	1-0:1.8.0*255	Active energy+

Tab. 3 - Fortsetzung der vorherigen Seite

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
516	519	0x0204	0x0207	4	RO	0x03	uint64	0.1 Wh	1-0:2.8.0*255	Active energy-
520	523	0x0208	0x020B	4	RO	0x03	uint64	0.1 varh	1-0:3.8.0*255	Reactive energy+
524	527	0x020C	0x020F	4	RO	0x03	uint64	0.1 varh	1-0:4.8.0*255	Reactive energy-
528	531	0x0210	0x0213	4	RO	0x03				(reserved)
532	535	0x0214	0x0217	4	RO	0x03				(reserved)
536	539	0x0218	0x021B	4	RO	0x03				(reserved)
540	543	0x021C	0x021F	4	RO	0x03				(reserved)
544	547	0x0220	0x0223	4	RO	0x03	uint64	0.1 VAh	1-0:9.8.0*255	Apparent energy+
548	551	0x0224	0x0227	4	RO	0x03	uint64	0.1 VAh	1-0:10.8.0*255	Apparent energy-
552	555	0x0228	0x022B	4	RO	0x03				(reserved)
556	559	0x022C	0x022F	4	RO	0x03				(reserved)
560	563	0x0230	0x0233	4	RO	0x03				(reserved)
564	567	0x0234	0x0237	4	RO	0x03				(reserved)
568	571	0x0238	0x023B	4	RO	0x03				(reserved)
572	575	0x023C	0x023F	4	RO	0x03				(reserved)
576	579	0x0240	0x0243	4	RO	0x03				(reserved)
580	583	0x0244	0x0247	4	RO	0x03				(reserved)
584	587	0x0248	0x024B	4	RO	0x03				(reserved)
588	591	0x024C	0x024F	4	RO	0x03				(reserved)
592	595	0x0250	0x0253	4	RO	0x03	uint64	0.1 Wh	1-0:21.8.0*255	Active energy+ (L1)
596	599	0x0254	0x0257	4	RO	0x03	uint64	0.1 Wh	1-0:22.8.0*255	Active energy- (L1)
600	603	0x0258	0x025B	4	RO	0x03	uint64	0.1 varh	1-0:23.8.0*255	Reactive energy+ (L1)
604	607	0x025C	0x025F	4	RO	0x03	uint64	0.1 varh	1-0:24.8.0*255	Reactive energy- (L1)
608	611	0x0260	0x0263	4	RO	0x03				(reserved)
612	615	0x0264	0x0267	4	RO	0x03				(reserved)
616	619	0x0268	0x026B	4	RO	0x03				(reserved)
620	623	0x026C	0x026F	4	RO	0x03				(reserved)
624	627	0x0270	0x0273	4	RO	0x03	uint64	0.1 VAh	1-0:29.8.0*255	Apparent energy+ (L1)
628	631	0x0274	0x0277	4	RO	0x03	uint64	0.1 VAh	1-0:30.8.0*255	Apparent energy-(L1)
632	635	0x0278	0x027B	4	RO	0x03				(reserved)

Tab. 3 - Fortsetzung der vorherigen Seite

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
636	639	0x027C	0x027F	4	RO	0x03				(reserved)
640	643	0x0280	0x0283	4	RO	0x03				(reserved)
644	647	0x0284	0x0287	4	RO	0x03				(reserved)
648	651	0x0288	0x028B	4	RO	0x03				(reserved)
652	655	0x028C	0x028F	4	RO	0x03				(reserved)
656	659	0x0290	0x0293	4	RO	0x03				(reserved)
660	663	0x0294	0x0297	4	RO	0x03				(reserved)
664	667	0x0298	0x029B	4	RO	0x03				(reserved)
668	671	0x029C	0x029F	4	RO	0x03				(reserved)
672	675	0x02A0	0x02A3	4	RO	0x03	uint64	0.1 Wh	1-0:41.8.0*255	Active energy+ (L2)
676	679	0x02A4	0x02A7	4	RO	0x03	uint64	0.1 Wh	1-0:42.8.0*255	Active energy- (L2)
680	683	0x02A8	0x02AB	4	RO	0x03	uint64	0.1 varh	1-0:43.8.0*255	Reactive energy+ (L2)
684	687	0x02AC	0x02AF	4	RO	0x03	uint64	0.1 varh	1-0:44.8.0*255	Reactive energy- (L2)
688	691	0x02B0	0x02B3	4	RO	0x03				(reserved)
692	695	0x02B4	0x02B7	4	RO	0x03				(reserved)
696	699	0x02B8	0x02BB	4	RO	0x03				(reserved)
700	703	0x02BC	0x02BF	4	RO	0x03				(reserved)
704	707	0x02C0	0x02C3	4	RO	0x03	uint64	0.1 VAh	1-0:49.8.0*255	Apparent energy+ (L2)
708	711	0x02C4	0x02C7	4	RO	0x03	uint64	0.1 VAh	1-0:50.8.0*255	Apparent energy- (L2)
712	715	0x02C8	0x02CB	4	RO	0x03				(reserved)
716	719	0x02CC	0x02CF	4	RO	0x03				(reserved)
720	723	0x02D0	0x02D3	4	RO	0x03				(reserved)
724	727	0x02D4	0x02D7	4	RO	0x03				(reserved)
728	731	0x02D8	0x02DB	4	RO	0x03				(reserved)
732	735	0x02DC	0x02DF	4	RO	0x03				(reserved)
736	739	0x02E0	0x02E3	4	RO	0x03				(reserved)
740	743	0x02E4	0x02E7	4	RO	0x03				(reserved)
744	747	0x02E8	0x02EB	4	RO	0x03				(reserved)
748	751	0x02EC	0x02EF	4	RO	0x03				(reserved)
752	755	0x02F0	0x02F3	4	RO	0x03	uint64	0.1 Wh	1-0:61.8.0*255	Active energy+ (L3)

Tab. 3 - Fortsetzung der vorherigen Seite

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Type	Units	OBIS-Code	Description
756	759	0x02F4	0x02F7	4	RO	0x03	uint64	0.1 Wh	1-0:62.8.0*255	Active energy- (L3)
760	763	0x02F8	0x02FB	4	RO	0x03	uint64	0.1 varh	1-0:63.8.0*255	Reactive energy+ (L3)
764	767	0x02FC	0x02FF	4	RO	0x03	uint64	0.1 varh	1-0:64.8.0*255	Reactive energy- (L3)
768	771	0x0300	0x0303	4	RO	0x03				(reserved)
772	775	0x0304	0x0307	4	RO	0x03				(reserved)
776	779	0x0308	0x030B	4	RO	0x03				(reserved)
780	783	0x030C	0x030F	4	RO	0x03				(reserved)
784	787	0x0310	0x0313	4	RO	0x03	uint64	0.1 VAh	1-0:69.8.0*255	Apparent energy+ (L3)
788	791	0x0314	0x0317	4	RO	0x03	uint64	0.1 VAh	1-0:70.8.0*255	Apparent energy- (L3)

Seite 18 von 31

Tab 4: TO/RM PnP Register

Start ad- dress (dec)	End ad- dress (dec)	Start ad- dress (hex)	End ad- dress (hex)	Size	R/W	Func- tion codes	Туре	Name	Default value / example	Description
8192	8192	0x2000	0x2000	1	RO	0x03	uint16	ManufacturerID	0x5233	Fixed value to identify every TQ device
8193	8193	0x2001	0x2001	1	RO	0x03	uint16	ProductID	Options: 0x4842(HWv1) 0x4852(HWv2) 0x4862(HWv3)	Indicates the hardware type of the product
8194	8194	0x2002	0x2002	1	RO	0x03	uint16	ProductVersion	Example: 0x0000	(Hardware) Revision of the TQ Energy Manager processor board
8195	8195	0x2003	0x2003	1	RO	0x03	uint16	FirmwareVersion	Example: 0x0103 = 1.3.x	Firmware Revision of the TQ Energy Manager
8196	8211	0x2004	0x2013	16	RO	0x03	string (32)	VendorName	Example: TQ- Systems GmbH	Contains the vendor name as a string, padded with NUL bytes
8212	8227	0x2014	0x2023	16	RO	0x03	string (32)	ProductName	Example: EM410	Contains the product name as a string, padded with NUL bytes
8228	8243	0x2024	0x2033	16	RO	0x03	string (32)	SerialNumber	Example: 30380912332211	Contains the serial number of the device as a string, padded with NUL bytes
8244	8244	0x2034	0x2034	1	RO	0x03	uint16	MeasuringInter- val	Example: 0x01F4 = 500 ms	Contains the mea- suring interval for measurement chip in ms
8245	8248	0x2035	0x2038	4	RO	0x03	uint64	UNIXTimestamp	Example: 1552323559000 = 2019-03-11 16:59:19	Contains the current UNIX timestamp in ms
8249	8249	0x2039	0x2039	1	RO	0x03	uint16	ModbusSpecVersion	Example: 0x0007	Version of the modbus speci- fication being

Im Bereich der TQ/RM PnP Register sind Informationen zur Identität des Gerätes enthalten.

- ManufacturerID ist ein statischer Wert, der die ID des Herstellers enthält. Darüber kann ein übergeordnetes SCADA System zwischen verschiedenen Geräten auf dem RS-485 unterscheiden.
- ProductID ist abhänig von der verbauten Hardware des Produktes.
- ProductVersion bezeichnet die Version der Hardware des Produktes.
- FirmwareVersion bezeichnet die Version der Software des Produktes.
- **VendorName** und **Produktname** beinhalten den Markennamen des OEM Herstellers und den Markennamen des Produktes als Strings.

Sämtliche Strings werden durch NUL Bytes und Leerzeichen (0x32) zu ihrer vollen Länge aufgefüllt. Der Modbus RTU Master / TCP Client sollte diese automatisch abschneiden bevor die Strings verwendet werden.

Ist die Systemzeit des Gerätes nicht gesetzt, werden die **UNIXTimestamp** Register auf Null gesetzt.

Tab. 5: SunSpec-Register

Start ad- dress (dec) ^{Seit}	End ad- dress (dec)	Size	R/W	Func- tion codes	Name	Type	Units	Scale factor	Description	Value range / OBIS mapping
40000	40001	2	RO	0x03	C_SunSpec_ID	uint32	N/A	N/A	Indicates that it is a valid SunSpec Modbus map.	
40002	40002	1	RO	0x03	C_SunSpec_DID	uint16	N/A	N/A	Indicates that it is a valid SunSpec Common Model block.	0x0001
40003	40003		RO	0x03	C_SunSpec_Length	uint16	registers	N/A	Length of Common Model	65
40004	40019	16	RO	0x03	C_Manufacturer	string (32)	N/A	N/A	$\begin{array}{cc} \text{Manufacturer} & \text{na-} \\ \text{me}^2 & \end{array}$	TQ-Systems GmbH
40020	40035	16	RO	0x03	C_Model	string (32)	N/A	N/A	Model name ²	Energy Manager 400
40036	40043	8	RO	0x03	C_Options	string (16)	N/A	N/A	Manufacturer- specific va- lue ^{Seite 25, 2}	{empty}
40044	40051	8	RO	0x03	C_Version	string (16)	N/A	N/A	Manufacturer- specific value	1.0
40052	40067	16	RO	0x03	C_SerialNumber	string (32)	N/A	N/A	Manufacturer- specific va- lue ^{Seite 25, 2}	1900221992
40068	40068	1	RO	0x03	C_DeviceAddress	uint16	N/A	N/A	Modbus ID (Modbus address)	247
40069	40069	1	RO	0x03	C_SunSpec_DID	uint16	N/A	N/A	Indicates that it is a valid Sun- Spec Meter Model block.	203
40070	40070	1	RO	0x03	C_SunSpec_Length	uint16	registers	N/A	Length of Meter Model	105
40071	40071	1	RO	0x03	M_AC_Current	int16	A	M_AC_Current_SF	AC Current (sum of active phases)	0x8000
40072	40072	1	RO	0x03	M_AC_Current_A	int16	A	M_AC_Current_SF	Phase A AC current	1-0:31.4.0*255
40073	40073	1	RO	0x03	M_AC_Current_B	int16	A	M_AC_Current_SF	Phase B AC current	1-0:51.4.0*255

Seite 21 v

Tab. 5 - Fortsetzung der vorherigen Seite

Start ad- dress (dec) ^{Sei}	End ad- dress (dec)	Size	R/W	Func- tion codes	Name	Type	Units	Scale factor	Description	Value range / OBIS mapping
40074	40074	1	RO	0x03	M_AC_Current_C	int16	A	M_AC_Current_SF	Phase C AC current	1-0:71.4.0*255
40075	40075	1	RO	0x03	M_AC_Current_SF	int16	N/A	N/A	AC Current Scale Factor ³	-2
40076	40076	1	RO	0x03	M_AC_Voltage_LN	int16	V	M_AC_Voltage_SF	Line to Neutral AC Voltage (average of active phases)	
40077	40077	1	RO	0x03	M_AC_Voltage_AN	int16	V	M_AC_Voltage_SF	Phase A to Neutral AC Voltage	1-0:32.4.0*255
40078	40078	1	RO	0x03	M_AC_Voltage_BN	int16	V	M_AC_Voltage_SF	Phase B to Neutral AC Voltage	
40079	40079	1	RO	0x03	M_AC_Voltage_CN	int16	V	M_AC_Voltage_SF	Phase C to Neutral AC Voltage	1-0:72.4.0*255
40080	40080	1	RO	0x03	M_AC_Voltage_LL	int16	V	M_AC_Voltage_SF	Line to Line AC Voltage (average of active phases)	
40081	40081	1	RO	0x03	M_AC_Voltage_AB	int16	V	M_AC_Voltage_SF	Phase A to Phase B AC Voltage	0x8000
40082	40082	1	RO	0x03	M_AC_Voltage_BC	int16	V	M_AC_Voltage_SF	Phase B to Phase C AC Voltage	0x8000
40083	40083		RO	0x03	M_AC_Voltage_CA	int16	V	M_AC_Voltage_SF	Phase C to Phase A AC Voltage	
40084	40084	1	RO	0x03	M_AC_Voltage_SF	int16	N/A	N/A	AC Voltage Scale Factor ^{Seite 25, 3}	-2
40085	40085	1	RO	0x03	M AC Freq	int16	Hz	M AC Freq SF	AC Frequency	1-0:14.4.0*255
40086	40086	1	RO	0x03	M_AC_Freq_SF	int16	N/A	N/A	AC Frequency Scale Factor ^{Seite 25, 3}	-2
40087	40087	1	RO	0x03	M_AC_Power	int16	W	M_AC_Power_SF	Total Real Power (sum of active phases)	
40088	40088	1	RO	0x03	M_AC_Power_A	int16	W	M_AC_Power_SF	Power	>0: 1-0:21.4.0*255; <0: 1-0:22.4.0*255
40089	40089	1	RO	0x03	M_AC_Power_B	int16	W	M_AC_Power_SF	Phase B AC Real Power	>0: 1-0:41.4.0*255; <0: 1-0:42.4.0*255

Tab. 5 - Fortsetzung der vorherigen Seite

Start ad- dress (dec) ^{Sei}	End ad- dress t (dec)	Size	R/W	Func- tion codes		Type	Units	Scale factor	Description	Value range / OBIS mapping
40090	40090	1	RO	0x03	M_AC_Power_C	int16	W	M_AC_Power_SF	Phase C AC Real Power	>0: 1-0:61.4.0*255; <0: 1-0:62.4.0*255
40091	40091	1	RO	0x03	M_AC_Power_SF	int16	N/A	N/A	AC Real Power Scale Fac- tor ^{Seite 25, 3}	1
40092	40092	1	RO	0x03	M_AC_VA	int16	VA	M_AC_VA_SF		>0: 1-0:9.4.0*255; <0: 1-0:10.4.0*255
40093	40093	1	RO	0x03	M_AC_VA_A	int16	VA	M_AC_VA_SF	Phase A AC Apparent Power	>0: 1-0:29.4.0*255; <0: 1-0:30.4.0*255
40094	40094	1	RO	0x03	M_AC_VA_B	int16	VA	M_AC_VA_SF	Phase B AC Apparent Power	>0: 1-0:49.4.0*255; <0: 1-0:50.4.0*255
40095	40095	1	RO	0x03	M_AC_VA_C	int16	VA	M_AC_VA_SF	Phase C AC Apparent Power	>0: 1-0:69.4.0*255; <0: 1-0:70.4.0*255
40096	40096	1	RO	0x03	M_AC_VA_SF	int16	N/A	N/A	AC Apparent Power Scale Fac- tor ^{Seite 25, 3}	
40097	40097	1	RO	0x03	M_AC_VAR	int16	var	M_AC_VAR_SF	Total AC Reactive Power (sum of ac- tive phases)	> 0: 1-0:3.4.0*255; < 0: 1-0:4.4.0*255
40098	40098	1	RO	0x03	M_AC_VAR_A	int16	var	M_AC_VAR_SF	Phase A AC Reactive Power	>0: 1-0:23.4.0*255; <0: 1-0:24.4.0*255
40099	40099	1	RO	0x03	M_AC_VAR_B	int16	var	M_AC_VAR_SF	Phase B AC Reactive Power	>0: 1-0:43.4.0*255; <0: 1-0:44.4.0*255
40100	40100	1	RO	0x03	M_AC_VAR_C	int16	var	M_AC_VAR_SF	Phase C AC Reactive Power	>0: 1-0:63.4.0*255; <0: 1-0:64.4.0*255
40101	40101	1	RO	0x03	M_AC_VAR_SF	int16	N/A	N/A	AC Reactive Power Scale Fac- tor Seite 25, 3	
40102	40102	1	RO	0x03	M_AC_PF	int16	%	M_AC_PF_SF		1-0:13.4.0*255 -1000+1000
40103	40103	1	RO	0x03	M_AC_PF_A	int16	%	M_AC_PF_SF	Phase A Power Factor	-1000+1000
40104	40104	1	RO	0x03	M_AC_PF_B	int16	%	M_AC_PF_SF	Phase B Power Factor	1-0:53.4.0*255 -1000+1000

Sei	

Tab. 5 - Fortsetzung der vorherigen Seite

Start ad- dress (dec) ^{Seit}	End ad- dress (dec)	Size	R/W	Func- tion codes		Type	Units	Scale factor	Description	Value range / OBIS mapping
40105	40105	1	RO	0x03	M_AC_PF_C	int16	%	M_AC_PF_SF	Phase C Power Factor	1-0:73.4.0*255 -1000+1000
40106	40106	1	RO	0x03	M_AC_PF_SF	int16	N/A	N/A	AC Power Factor Scale Factor Scite 25, 3	-3
40107	40108	2	RO	0x03	M_Exported	uint32	Wh	M_Energy_W_SF	Total Exported Real Energy	1-0:2.8.0*255
40109	40110	2	RO	0x03	M_Exported_A	uint32	Wh	M_Energy_W_SF	Phase A Exported Real Energy	1-0:22.8.0*255
40111	40112	2	RO	0x03	M_Exported_B	uint32	Wh	M_Energy_W_SF	Phase B Exported Real Energy	1-0:42.8.0*255
40113	40114	2	RO	0x03	M_Exported_C	uint32	Wh	M_Energy_W_SF	Phase C Exported Real Energy	1-0:62.8.0*255
40115	40116	2	RO	0x03	M_Imported	uint32	Wh	M_Energy_W_SF	Total Imported Real Energy	1-0:1.8.0*255
40117	40118	2	RO	0x03	M_Imported_A	uint32	Wh	M_Energy_W_SF	Phase A Imported Real Energy	1-0:21.8.0*255
40119	40120	2	RO	0x03	M_Imported_B	uint32	Wh	M_Energy_W_SF	Phase B Imported Real Energy	1-0:41.8.0*255
40121	40122		RO	0x03	M_Imported_C	uint32	Wh	M_Energy_W_SF	Phase C Imported Real Energy	
40123	40123	1	RO	0x03	M_Energy_W_SF	int16	N/A	N/A	Real Energy Scale Factor ^{Seite 25, 3}	0
40124	40125	2	RO	0x03	M_Exported_VA	uint32	VAh	M_Energy_VA_SF	Total Exported Apparent Energy	1-0:10.8.0*255
40126	40127	2	RO	0x03	M_Exported_VA_A	uint32	VAh	M_Energy_VA_SF	Phase A Exported Apparent Energy	1-0:30.8.0*255
40128	40129	2	RO	0x03	M_Exported_VA_B	uint32	VAh	M_Energy_VA_SF	Phase B Exported Apparent Energy	1-0:50.8.0*255
40130	40131	2	RO	0x03	M_Exported_VA_C	uint32	VAh	M_Energy_VA_SF	Phase C Exported Apparent Energy	1-0:70.8.0*255
40132	40133	2	RO	0x03	M_Imported_VA	uint32	VAh	M_Energy_VA_SF	Total Imported Apparent Energy	1-0:9.8.0*255
40134	40135	2	RO	0x03	M_Imported_VA_A	uint32	VAh	M_Energy_VA_SF	Phase A Imported Apparent Energy	1-0:29.8.0*255

Tab. 5 - Fortsetzung der vorherigen Seite

Start ad- dress (dec) ^{Seit}	End ad- dress (dec)	Size	R/W	Func- tion codes		Туре	Units	Scale factor	Description	Value range / OBIS mapping
40136	40137	2	RO	0x03	M_Imported_VA_B	uint32	VAh	M_Energy_VA_SF	Phase B Imported Apparent Energy	1-0:49.8.0*255
40138	40139	2	RO	0x03	M_Imported_VA_C	uint32	VAh	M_Energy_VA_SF	Phase C Imported Apparent Energy	1-0:69.8.0*255
40140	40140	1	RO	0x03	M_Energy_VA_SF	int16	N/A	N/A	Apparent Energy Scale Factor Seite 25, 3	0
40141	40142	2	RO	0x03	M_Import_VARh_Q1	uint32	VARh	M_Energy_VAR_SF	Quadrant 1: Total Imported Reactive Energy	0x80000000
40143	40144	2	RO	0x03	M_Import_VARh_Q1A	uint32	VARh	M_Energy_VAR_SF	Phase A - Quadrant 1: Imported Reactive Energy	0x80000000
40145	40146	2	RO	0x03	M_Import_VARh_Q1B	uint32	VARh	M_Energy_VAR_SF	Phase B - Quadrant 1: Imported Reactive Energy	0x80000000
40147	40148	2	RO	0x03	M_Import_VARh_Q1C	uint32	VARh	M_Energy_VAR_SF	Phase C - Quadrant 1: Imported Reactive Energy	0x80000000
40149	40150	2	RO	0x03	M_Import_VARh_Q2	uint32	VARh	M_Energy_VAR_SF	Quadrant 2: Total Imported Reactive Energy	0x80000000
40151	40152	2	RO	0x03	M_Import_VARh_Q2A	uint32	VARh	M_Energy_VAR_SF	Phase A - Quadrant 2: Imported Reactive Energy	0x80000000
40153	40154	2	RO	0x03	M_Import_VARh_Q2B	uint32	VARh	M_Energy_VAR_SF	Phase B - Quadrant 2: Imported Reactive Energy	0x80000000
40155	40156	2	RO	0x03	M_Import_VARh_Q2C	uint32	VARh	M_Energy_VAR_SF	Phase C - Quadrant 2: Imported Reactive Energy	0x80000000
40157	40158	2	RO	0x03	M_Export_VARh_Q3	uint32	VARh	M_Energy_VAR_SF	Quadrant 3: Total Imported Reactive Energy	0x80000000

25 31

Tab. 5 - Fortsetzung der vorherigen Seite

Start ad- dress (dec) ^{Seit}	End ad- dress (dec)	Size	R/W	Func- tion codes	Name	Туре	Units	Scale factor	Description	Value range / OBIS mapping
40159	40160	2	RO	0x03	M_Export_VARh_Q3A	uint32	VARh	M_Energy_VAR_SF	drant 3: Imported Reactive Energy	
40161	40162	2	RO	0x03	M_Export_VARh_Q3B	uint32	VARh	M_Energy_VAR_SF	Phase B - Quadrant 3: Imported Reactive Energy	0x80000000
40163	40164	2	RO	0x03	M_Export_VARh_Q3C	uint32	VARh	M_Energy_VAR_SF	Phase C - Quadrant 3: Imported Reactive Energy	
40165	40166	2	RO	0x03	M_Export_VARh_Q4	uint32	VARh	M_Energy_VAR_SF	Quadrant 4: Total Imported Reactive Energy	0x80000000
40167	40168	2	RO	0x03	M_Export_VARh_Q4A	uint32	VARh	M_Energy_VAR_SF	Phase A - Quadrant 4: Imported Reactive Energy	0x80000000
40169	40170	2	RO	0x03	M_Export_VARh_Q4B	uint32	VARh	M_Energy_VAR_SF	Phase B - Quadrant 4: Imported Reactive Energy	0x80000000
40171	40172	2	RO	0x03	M_Export_VARh_Q4C	uint32	VARh	M_Energy_VAR_SF	Phase C - Quadrant 4: Imported Reactive Energy	0x80000000
40173	40173	1	RO	0x03	M_Energy_VAR_SF	int16	N/A	N/A	Reactive Energy Scale tor Seite 25, 3	0
40174	40175	2	RO	0x03	M Events	uint32	N/A	N/A	Event flags	0
40176	40176	1	RO	0x03	C_SunSpec_DID	uint16	N/A	N/A	Indicates that it is a valid SunSpec End Model block.	0xffff
40177	40177	1	RO	0x03	C_SunSpec_Length	uint16	registers	N/A	Length of End Mo- del	0

¹ Anmerkung um off-by-one-Fehler zu vermeiden: Die SunSpec-Spezifikation (wie auf www.sunspec.org zu finden) bezieht sich immer auf Registernummern, wohingegen sich dieses Dokument immer auf Registeradressen bezieht. Um auf SunSpec-Register 40001 zuzugreifen, muss die Registeradresse 40000 verwendet werden, d.h. Hexadezimal-Offset 0x9C40.

Diese Felder können auf Anfrage ein Kundenbranding erhalten
 Beispiel: Das Register M_AC_Freq enthält den Wert 4950 und M_AC_Freq_SF enthält den Wert -2. Dann kann die Frequenz berechnet werden als:
 4950 Hz * 10^{-2} = 49.50 Hz

Wichtige Anmerkung: Obwohl die Skalierungsfaktoren hier als feste Werte angegeben sind, sollten sie nicht als fest betrachtet werden. Die Werte können sich dynamisch ändern, um zu den Messwerten zu passen. Bitte fragen Sie die Skalierungsfaktoren immer zusammen mit den dazugehörigen Werten ab und nehmen Sie Code mit auf, um die Werte dynamisch zu berechnen.

B.1 Dynamischer Modbus

Dieser Registerbereich ist für Registerblöcke vorgesehen, die z.B. die Datenpunkte angeschlossener Geräte, wie der SU100, enthalten. Um einen solchen Registerblock in diesem Bereich anzulegen, muss die zugehörige Registerblock-Spezifikation installiert sein und in der Konfiguration bei Auslieferung des Energy Managers aktiviert sein.

B.2 Gruppenregister

Dieser Registerbereich enthält gruppenspezifische Informationen. Insgesamt gibt es 48 Blöcke von Gruppenregistern. Jeder Registerblock ist 40 Register groß, und entspricht einer Gruppe, die im Energy Manager konfiguriert ist. Die Gruppenregister stehen nur zur Verfügung, wenn auf dem Gerät Gruppen aktiviert und konfiguriert sind.

Das Offset jedes Gruppen-Registerblocks wird wie folgt berechnet:

offset = 0xE800 + (Gruppen-ID) * 0x0028

Tab. 6: Übersicht der Gruppenregister

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	Description
59392	59431	0xE800	0xE827	40	Group 0
59432	59571	0xE828	0xE8B3	40	Group 1
61272	61311	0xEF58	0xEF7F	40	Group 47

Der Registerblock ist für alle Gruppen gleich. Daher ist in der folgenden Tabelle nur der Registerblock für die erste Gruppe beschrieben.

Tab. 7: Gruppenregisterblock

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
59392	59395	0xE800	0xE803	4	RO	0x10	string (8)	unitless		Group label
59396	59399	0xE804	0xE807	4	RO	0x10				(reserved)
59400	59400	0xE808	0xE808	1	RO	0x10				(reserved)
59401	59404	0xE809	0xE80C	4	RO	0x10	uint64	1Wh	1-x:1.8.0*255	Active Energy + (group sum)
59405	59408	0xE80D	0xE810	4	RO	0x10	uint64	1Wh	1-x:2.8.0*255	Active Energy - (group sum)
59409	59412	0xE811	0xE814	4	RO	0x10	uint64	1VAh	1-x:9.8.0*255	Apparent Energy + (group sum)
59413	59416	0xE815	0xE818	4	RO	0x10	uint64	1VAh	1-x:10.8.0*255	Apparent Energy - (group sum)
59417	59418	0xE819	0xE81A	2	RO	0x10	uint32	0.001W	1-x:1.4.0*255	Active Power + (group sum)
59419	59429	0xE81B	0xE81C	2	RO	0x10	uint32	0.001W	1-x:2.4.0*255	Active Power - (group sum)
59421	59422	0xE81D	0xE81E	2	RO	0x10	uint32	0.001VA	1-x:9.4.0*255	Apparent Power + (group sum)
59423	59424	0xE81F	0xE820	2	RO	0x10	uint32	0.001VA	1-x:10.4.0*255	Apparent Power - (group sum)
59425	59426	0xE821	0xE822	2	RO	0x10	uint32	0.001A	1-x:11.4.0*255	Current (group sum)
59427	59428	0xE823	0xE824	2	RO	0x10				(reserved)
59429	59430	0xE825	0xE826	2	RO	0x10				(reserved)
59431	59431	0xE827	0xE827	1	RO	0x10	uint16	unitless		class

Die Klasse einer Gruppe kann folgende Werte enthalten:

- 0: Unbekannt
- 1: Verbraucher
- 2: Erzeuger
- 3: Hybrid

B.3 Sensorregister

Dieser Registerbereich enthält sensorspezifische Informationen. Insgesamt gibt es 96 Blöcke von Sensorregistern. Jeder Registerblock ist 40 Register groß, und entspricht einem Sensor, der an den Energy Manager angeschlossen ist. Die Sensorregister stehen nur zur Verfügung, wenn auf dem Gerät Sensoren aktiviert und konfiguriert sind.

Das Offset jedes Sensor-Registerblocks wird wie folgt berechnet:

offset = 0xF000 + (Sensor-ID) * 0x0028

Tab. 8: Übersicht der Sensorregister

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	Description
61440	61479	0xF000	0xF027	40	Sensor 0
61480	61519	0xF028	0xF04F	40	Sensor 1
65240	65279	0xFED8	0xFEFF	40	Sensor 95

Der Registerblock ist für alle Gruppen gleich. Daher ist in der folgenden Tabelle nur der Registerblock für den ersten Sensor beschrieben. Die OBIS-Codes dienen hier nur der Illustration, da der echte OBIS-Code von der konfigurierten Phase des Sensors abhängt. Wenn die Phase eines Sensors nicht konfiguriert wurde, enthalten dessen Register keine Werte, da die Phase benötigt wird, um mit Hilfe der Spannung und Phasenwinkels aus den internen Messwerten die weiteren Werte zu berechnen.

30 von 31

Tab. 9: Sensorregisterbloo	ck
----------------------------	----

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
61440	61443	0xF000	0xF003	4	RO	0x10	string (8)	unitless		Label
61444	61447	0xF004	0xF007	4	RO	0x10	uint64	unitless		Serial ⁴
61448	61448	0xF008	0xF008	1	RO	0x10	uint16	unitless		Phase (1,2,3)
61449	61452	0xF009	0xF00C	4	RO	0x10	uint64	1Wh	1-x:1.8.0*255	Active Energy +
61453	61456	0xF00D	0xF010	4	RO	0x10	uint64	1Wh	1-x:2.8.0*255	Active Energy -
61457	61460	0xF011	0xF014	4	RO	0x10	uint64	1Vah	1-x:9.8.0*255	Apparent Energy +
61461	61464	0xF015	0xF018	4	RO	0x10	uint64	1Vah	1-x:10.8.0.*255	Apparent Energy -
61465	61466	0xF019	0xF01A	2	RO	0x10	uint32	0.001W	1-x:1.4.0*255	Active Power +
61467	61468	0xF01B	0xF01C	2	RO	0x10	uint32	0.001W	1-x:2.4.0*255	Active Power -
61469	61470	0xF01D	0xF01E	2	RO	0x10	uint32	0.001VA	1-x:9.4.0*255	Apparent Power +
61471	61472	0xF01F	0xF020	2	RO	0x10	uint32	0.001VA	1-x:10.4.0*255	Apparent Power -
61473	61474	0xF021	0xF022	2	RO	0x10	uint32	0.001A	1-x:11.4.0*255	Current
61475	61476	0xF023	0xF024	2	RO	0x10	uint32	0.001V	1-x:12.4.0*255	Voltage
61477	61478	0xF025	0xF026	2	RO	0x10	int32	0.001	1-x:13.4.0.*255	Power factor
61479	61479	0xF027	0xF027	1	RO	0x10	uint16	unitless		Class

```
serial = 0
serial |= (S6 << 8*7) | (S5 << 8*6) | (S4 << 8*5) | (S3 << 8*4) | (S2 << 8*3) | (S1 << 8*2) | (S0 << 8)
 Beispiel:
```

Seriennummer (String): 06.59.26.B8.E4.F0.01

: (0x06 << 8*7) | (0x59 << 8*6) | (0x26 << 8*5) | (0xB8 << 8*4) |Konvertierung

 $(0xE4 << 8*3) \mid (0xF0 << 8*2) \mid (0x01 << 8)$

Seriennummer (uint64): 457439412711588096

⁴ Die Seriennummer von Sensoren besteht aus 7 Byte und wird in der Weboberfläche für gewöhnlich als String im Format S6.S5.S4.S3.S2.S1.S0 angezeigt. Über Modbus wird die Seriennummer jedoch nicht als String sondern als Ganzzahl vom Typ uint64 übertragen. Das höchstwertige Bit der Seriennummer entspricht dabei dem höchstwertigen Bit des Datentyps (uint64). Nachfolgendes Berechnungsschema illustriert die Konvertierung von String nach uint64:

Die Klasse eines Sensors kann folgende Werte enthalten:

- 0: Unbekannt
- 1: Verbraucher
- 2: Erzeuger